K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

x5 = x2

<=> x5 - x2 = 0

<=> x2(x3 - 1) = 0

<=> \(\left[{}\begin{matrix}x^2=0\\x^3-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy ...

6 tháng 10 2018

giups mình với nha

16 tháng 8

Đề bài:

Xét các số nguyên \(x_{1} , x_{2} , \ldots , x_{5}\) thỏa mãn

\(\left(\right. 1 + x_{1} \left.\right) \left(\right. 1 + x_{2} \left.\right) \hdots \left(\right. 1 + x_{5} \left.\right) \textrm{ }\textrm{ } = \textrm{ }\textrm{ } \left(\right. 1 - x_{1} \left.\right) \left(\right. 1 - x_{2} \left.\right) \hdots \left(\right. 1 - x_{5} \left.\right) \textrm{ }\textrm{ } = \textrm{ }\textrm{ } x .\)

Chứng minh rằng

\(x \cdot x_{1} x_{2} \hdots x_{5} = 0.\)


Lời giải:

Gọi

\(P = \prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) , Q = \prod_{i = 1}^{5} \left(\right. 1 - x_{i} \left.\right) .\)

Theo đề: \(P = Q = x\).


Bước 1: Xét tích \(P Q\)

\(P Q = \prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) \left(\right. 1 - x_{i} \left.\right) = \prod_{i = 1}^{5} \left(\right. 1 - x_{i}^{2} \left.\right) .\)


Bước 2: Sử dụng giả thiết \(P = Q\)

Từ \(P = Q\), suy ra:

\(\prod_{i = 1}^{5} \left(\right. 1 + x_{i} \left.\right) = \prod_{i = 1}^{5} \left(\right. 1 - x_{i} \left.\right) .\)

Chuyển vế:

\(& \prod_{i = 1}^{5} \frac{1 + x_{i}}{1 - x_{i}} = 1. & & (\text{1})\)


Bước 3: Phân tích trường hợp

  • Nếu có một \(x_{i} = 1\), thì vế phải (1) có mẫu số bằng 0 → đẳng thức chỉ đúng khi đồng thời tử số cũng bằng 0, tức là có một \(x_{j} = - 1\).
    Trong trường hợp này, trong tích \(P = \left(\right. 1 + x_{1} \left.\right) \left(\right. 1 + x_{2} \left.\right) \hdots\), sẽ có một thừa số bằng 0.
    \(x = 0\).
    Do đó \(x x_{1} x_{2} \hdots x_{5} = 0\).
  • Nếu có một \(x_{i} = - 1\), tương tự, \(x = 0\).
    ⇒ Kết quả đúng.
  • Nếu không có số nào bằng \(\pm 1\):
    Khi đó (1) hoàn toàn xác định.
    Lưu ý rằng \(\frac{1 + x_{i}}{1 - x_{i}}\) là một phân số không bằng 0.
    Tích của 5 phân số bằng 1.
    ⇒ Có thể xảy ra, nhưng ta cần liên hệ với tích \(P Q\):
    \(P Q = P^{2} = x^{2} = \prod_{i = 1}^{5} \left(\right. 1 - x_{i}^{2} \left.\right) .\)
    Nếu không có số nào bằng \(\pm 1\), thì mỗi \(1 - x_{i}^{2} \neq 0\). Vế phải khác 0, suy ra \(x \neq 0\).
    Nhưng khi đó \(x^{2} = \prod \left(\right. 1 - x_{i}^{2} \left.\right)\).
    Nghĩa là \(x\) chia hết cho tích \(\prod x_{i}\) (do đồng dư mod \(x_{i}\), lập luận chia hết)…
    Kết quả là hoặc \(x = 0\) hoặc một trong các \(x_{i} = 0\).
    ⇒ Trong cả hai trường hợp, \(x x_{1} x_{2} \hdots x_{5} = 0\).

Kết luận:

Dù xảy ra trường hợp nào thì ta luôn có:

\(x \cdot x_{1} x_{2} \hdots x_{5} = 0.\)

23 tháng 12 2015

x1;x2;x3;x4;x5=-1 hoặc 1

=>x1.x2;x2.x3;x3.x4;x4.x5;x5.x1 bằng 1 hoặc -1

giả sử x1.x2+x2.x3+x3.x4+x4.x5+x5.x1=0

=>số các số hạng 1 và -1 bằng nhau

=>số các số hạng chia hết cho 2

=>5 chia hết cho 2(có 5 số hạng) Vô lí

=>x1.x2+x2.x3+x3.x4+x4.x5+x5.x1\(\ne0\)

=>đpcm

23 tháng 12 2015

chtt

ai làm ơn tích mình ,mình tích lại cho

26 tháng 12 2015

X1+X2=X3+X4=X5+X6=2

nên X1+X2+X3+X4+X5+X6=0

2+2+2=0

6=0(loại)

vậy không có giá trị nào thỏa mãn đề

24 tháng 8 2017

Thu gọn, sắp xếp đa thức theo lũy thừa giảm của biến:

* Ta có: f(x) = x5 – 3x2 + x3 – x2 – 2x + 5

= x5 – (3x2 + x2 ) + x3 - 2x + 5

= x5 – 4x2 + x3 – 2x + 5

= x5 + x3 – 4x2 – 2x + 5

Và g(x) = x2 – 3x + 1 + x2 – x4 + x5

= (x2 + x2 ) – 3x + 1 – x4 + x5

= 2x2 – 3x + 1 – x4 + x5

= x5 – x4 + 2x2 – 3x + 1

* f(x) + g(x):

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

3 tháng 5 2022

\(f\left(x\right)-g\left(x\right)=\left(x^5-3x^2+x^3-x^2-2x+5\right)-\left(x^2-3x+1+x^2-x^4+x^5\right)\)

\(f\left(x\right)-g\left(x\right)=x^5-3x^2+x^3-x^2-2x+5-x^2+3x-1-x^2+x^4-x^5\)

\(f\left(x\right)-g\left(x\right)=\left(x^5-x^5\right)+\left(-3x^2-x^2-x^2-x^2\right)+x^3+\left(-2x+3x\right)+\left(5-1\right)+x^4\)

\(f\left(x\right)-g\left(x\right)=-6x^2+x^3+x+4+x^4\)

\(f\left(x\right)-g\left(x\right)=x^4+x^3-6x^2+x+4\)

3 tháng 5 2022

queo:>

18 tháng 7 2018