Cho x>0;y>0 . Biết x/2=y/3 và x^2y^2=576 . Khi đó cặp số (x;y) thỏa mãn đề bài là () (Nhập theo đúng thứ tự x trước y sau, ngăn cách bởi dấu ";"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz
Lời giải:
Nếu $x>0$ thì $-x< 0$. Do đó $-x< 0< x\Rightarrow -x< x$. Đáp án A sai
Nếu $x>0\Rightarrow -x< 0$. Đáp án B sai
Nếu $x< 0\Rightarrow -x>0$. Do đó $-x>0>x\Rightarrow -x>x$. Đáp án C sai
Nếu $x>0\Rightarrow -x< 0$. Đáp án D đúng (chọn)
vì x,y,z>0 nên áp dụng bđt côsi ta có
x+y >= 2\(\sqrt{xy}\)
y+z >= 2\(\sqrt{yz}\)
z+x >= 2\(\sqrt{xz}\)
\(\Rightarrow\)(x+y)(y+z)(z+x) >= 8\(\sqrt{x^2y^2z^2}\)
>= 8xyz
Dấu = xảy ra <=> x=y=z
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
Ta có x. (-x)=x.x.(-1)=-x^2>0
==> x^2<0 (vì âm của nó là dương) (1)
mà x>0==>x^2>0 (2)
Từ (1) và (2) ==> mâu thuẫn
Vậy x thuộc rỗng
Ta có \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Leftrightarrow x=2k;y=3k\)
\(Mà^{ }x^2.y^2=576\)
\(Hay\left(2k\right)^2.\left(3k\right)^2=576\)
\(\Rightarrow\left(2k\right)^2.\left(3k\right)^2=24^2\)
\(\Rightarrow2k.3k=24\)
\(Hay^{ }6.k^2=24\)
\(\Rightarrow k^2=24:6=4\)
\(\Rightarrow k=2\)
\(Mà^{ }x=2k;y=3k\)
\(\Rightarrow x=4;y=6\)
Vậy cặp số (x;y) thỏa mãn đề bài là (4;6)