P(x)=4x^3+5x^2-4x^3+6x+8x-2
Q(x)=1/7x^3-2/5x^2-1/7x^3+2/5x^2-2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
2. \(x^2+4x+3=\left(x+1\right)\left(x+3\right)\)
3. \(x^2+5x+4=\left(x+1\right)\left(x+4\right)\)
4. \(x^2-4x+3=\left(x-1\right)\left(x-3\right)\)
5. \(x^2-4x+4=\left(x-2\right)^2\)
6. \(x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
7. \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
8. \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
9. \(x^2-7x+10=\left(x-2\right)\left(x-5\right)\)
10. \(x^2+8x+12=\left(x+2\right)\left(x+6\right)\)
11. \(x^2-8x+16=\left(x-4\right)^2\)
12. \(x^2+8x+15=\left(x+3\right)\left(x+5\right)\)
13. \(x^2-8x+7=\left(x-1\right)\left(x-7\right)\)
14. \(x^2+9x+8=\left(x+1\right)\left(x+8\right)\)
15. \(x^2-9x+14=\left(x-2\right)\left(x-7\right)\)
16. \(x^2+9x+18=\left(x+3\right)\left(x+6\right)\)
17. \(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(18.2x^2-3x+1=2x^2-x-2x+1\)
\(=x\cdot\left(2x-1\right)-\left(2x-1\right)=\left(2x-1\right)\left(x-1\right)\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
Làm mẫu 1 câu rồi cứ dựa vào đấy mà làm em nhé
a)
= 3 - 7x + 6 + 4x - 2 = 4 + 3x
= -7x + 4x - 3x = 4 - 3 - 6 + 2
<=> -6x = -3
<=> x = -3 : (-6)
<=> x = 1/2
a, 3 - (7x - 6) - (-4x + 2) = - (-4 - 3x)
3 - 7x + 6 + 4x - 2 = 4 + 3x
-7x + 4x - 3x = 4 - 3 - 6 + 2
-6x = -3
x = (-3) : (-6)
x = 0,5
b, 4x + (-8x + 3) = -(-7x + 6) - 5x
4x - 8x + 3 = 7x - 6 - 5x
4x - 8x - 7x + 5x = -6 - 3
-6x = -9
x = (-9) : (-6)
x = 1,5
c, 6 - (-4 - 3x) - (2 - 5x) = 7 - (6x - 1)
6 + 4 + 3x - 2 + 5x = 7 - 6x + 1
3x + 5x + 6x = 7 + 1 - 6 - 4 + 2
14x = 0
x = 0 : 14
x = 0
a: \(=\dfrac{6x^2+9x+8x+12}{2x+3}=\dfrac{3x\left(2x+3\right)+4\left(2x+3\right)}{2x+3}\)
=3x+4
b: \(=\dfrac{5x^2-2x+15x-6}{5x-2}\)
\(=\dfrac{x\left(5x-2\right)+3\left(5x-2\right)}{5x-2}=x+3\)
c: \(=\dfrac{-8x^2+20x+2x-5-10}{2x-5}=-4x+1+\dfrac{-10}{2x-5}\)
d: \(=\dfrac{14x^2-35x+2x-5}{2x-5}=\dfrac{7x\left(2x-5\right)+\left(2x-5\right)}{2x-5}\)
=7x+1
e: \(=\dfrac{2x^3+x^2+6x^2+3x+12x+6}{2x+1}\)
\(=\dfrac{x^2\left(2x+1\right)+3x\left(2x+1\right)+6\left(2x+1\right)}{2x+1}=x^2+3x+6\)
f: \(=\dfrac{x^3-2x^2+6x^2-12x+x-2}{x-2}=x^2+6x+1\)
g: \(=\dfrac{12x^3+6x^2-4x^2-2x+6x+3}{2x+1}=6x^2-2x+3\)
\(a,2x^3+5x^2+5x+3\)
\(=2x^3+3x^2+2x^2+3x+2x+3\)
\(=x^2\left(2x+3\right)+x\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(2x+3\right)\left(x^2+x+1\right)\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)