Cho n thuộc Z n>1 . Chứng minh nn_n2+n-1 chia hết cho (n-1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n.27+3^n.3+2^n.8+2^n.4\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)

Ta thấy 24 = 3.8
Mặt khác ƯCLN(3,8)=1 nên ta cần chứng minh tích trên chia hết cho 3 và 8
*Chứng minh chia hết cho 3
Vì tích \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)là tích của 4 số tự nhiên liên tiếp
Do đó \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 3 (1)
*Chứng minh chia hết cho 8
Vì tích \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)là tích của 4 số tự nhiên liên tiếp nên sẽ có 2 số chẵn và 2 số lẻ
Ta thấy tích 2 số chẵn liên tiếp luôn chia hết cho 8 nên \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 8 (2)
Từ (1) và (2) suy ra \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)chia hết cho 24

a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15

\(2n^2\left(n+1\right)+n\left(n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n+2\right)\)
=n(n+1)(n-1)+n(n+1)(n+2)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1)⋮3!=6(1)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên n(n+1)(n+2)⋮3!=6(2)
Từ (1),(2) suy ra n(n+1)(n-1)+n(n+1)(n+2)⋮6
=>\(2n^2\left(n+1\right)+n\left(n+1\right)\) ⋮6
Để chứng minh rằng biểu thức \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 6 với \(n \in \mathbb{Z}\), ta cần chứng minh rằng biểu thức này chia hết cho 2 và 3, vì một số chia hết cho 6 khi và chỉ khi nó chia hết cho cả 2 và 3.
Bước 1: Chia hết cho 2
Ta cần chứng minh rằng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Xét biểu thức:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)
Chia nó thành hai phần:
- Phần thứ nhất: \(2 n^{2} \left(\right. n + 1 \left.\right)\) chắc chắn chia hết cho 2 vì có yếu tố 2.
- Phần thứ hai: \(n \left(\right. n + 1 \left.\right)\) là tích của hai số liên tiếp. Một trong hai số này chắc chắn chia hết cho 2, nên \(n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Do đó, cả hai phần của biểu thức đều chia hết cho 2, nên tổng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Bước 2: Chia hết cho 3
Tiếp theo, ta cần chứng minh rằng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Xét biểu thức:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)
Ta sẽ xét các trường hợp với \(n m o d \textrm{ } \textrm{ } 3\) (tức là \(n\) chia cho 3 có dư 0, 1 hoặc 2).
Trường hợp 1: \(n \equiv 0 \left(\right. m o d 3 \left.\right)\)
- Khi \(n \equiv 0 \left(\right. m o d 3 \left.\right)\), ta có \(n = 3 k\) với \(k \in \mathbb{Z}\).
- Biểu thức trở thành:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k \left.\right)^{2} \left(\right. 3 k + 1 \left.\right) + \left(\right. 3 k \left.\right) \left(\right. 3 k + 1 \left.\right)\)
Vì \(n = 3 k\), ta thấy cả hai phần của biểu thức đều chia hết cho 3, do đó \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)chia hết cho 3.
Trường hợp 2: \(n \equiv 1 \left(\right. m o d 3 \left.\right)\)
- Khi \(n \equiv 1 \left(\right. m o d 3 \left.\right)\), ta có \(n = 3 k + 1\).
- Biểu thức trở thành:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k + 1 \left.\right)^{2} \left(\right. 3 k + 2 \left.\right) + \left(\right. 3 k + 1 \left.\right) \left(\right. 3 k + 2 \left.\right)\)
Ta có thể tính chi tiết từng phần, nhưng vì \(\left(\right. 3 k + 1 \left.\right) \left(\right. 3 k + 2 \left.\right)\) luôn chia hết cho 3, nên \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Trường hợp 3: \(n \equiv 2 \left(\right. m o d 3 \left.\right)\)
- Khi \(n \equiv 2 \left(\right. m o d 3 \left.\right)\), ta có \(n = 3 k + 2\).
- Biểu thức trở thành:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k + 2 \left.\right)^{2} \left(\right. 3 k + 3 \left.\right) + \left(\right. 3 k + 2 \left.\right) \left(\right. 3 k + 3 \left.\right)\)
Cũng như các trường hợp trên, \(\left(\right. 3 k + 2 \left.\right) \left(\right. 3 k + 3 \left.\right)\) chia hết cho 3, do đó \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Kết luận:
Vì biểu thức \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho cả 2 và 3, nên nó chia hết cho 6 với mọi \(n \in \mathbb{Z}\).