K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

a) Với x = 25 thì \(N=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)

b) Ta có   \(M=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\)

\(M=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)

Suy ra \(S=M.N=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

26 tháng 11 2020

\(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)

Biến đổi ta được : \(\left(\sqrt{a'b}-\sqrt{ab'}\right)^2+\left(\sqrt{a'c}-\sqrt{ac'}\right)^2+\left(\sqrt{b'c}-\sqrt{bc'}\right)^2=0\)

25 tháng 6 2019
https://i.imgur.com/jxSqla9.jpg
25 tháng 6 2019

Mk lấy KQ rút gọn của 💋Amanda💋 nha!

d/ \(M=\frac{\sqrt{a}-2}{\sqrt{a}+1}=\frac{\sqrt{a}+1-3}{\sqrt{a}+1}=1-\frac{3}{\sqrt{a}+1}\)

\(\sqrt{a}+1\ge1\Rightarrow\frac{3}{\sqrt{a}+1}\le3\)

\(\Rightarrow1-\frac{3}{\sqrt{a}+1}\ge1-3=-2\)

"="\(\Leftrightarrow a=0\)

13 tháng 8 2019

Rút gọn biểu thức chứa căn bậc hai

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Lời giải:

Ta có:

$a+b+c=abc\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow bc+a(a+b+c)=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)$

$\Rightarrow \frac{a}{\sqrt{bc(a^2+1)}}=\frac{a}{\sqrt{(a+b)(a+c)}}$

Áp dụng BĐT AM-GM:

\(\frac{a}{\sqrt{bc(1+a^2)}}=\frac{a}{\sqrt{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

Hoàn toàn tương tự với các phân thức còn lại:

\(S\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

Vậy $S_{\max}=\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$

29 tháng 5 2019

Điểm rơi \(a=b=c=1\) nếu thay vào dễ thấy đề sai.

\(3.\sqrt{\frac{9}{\left(1+1\right)^2}+1^2}=\frac{3\sqrt{13}}{2}\)

Nếu giả thiết của em là đúng thì bài tương tự ở đây :D

30 tháng 5 2019

Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :

\(\sum\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)

\(=\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\frac{729}{4\left(a+b+c\right)^2}+\left(a+b+c\right)^2}=\frac{3\sqrt{13}}{2}\)

Is that true ?? \("="\Leftrightarrow a=b=c=1\)