K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

Ta có:

x+4x + 4=  (x + 2)2

X- 4x + 4 = (x - 2)2

Suy ra, ta có Q = x + 2 + x - 2 = 2x

31 tháng 8 2019

\(Q=\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)

\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-2\right)^2}\)

\(=|x+2|+|x-2|\)

\(=|x+2|+|2-x|\ge|x+2+2-x|=4\)

\(\Rightarrow Q_{min}=4\)\(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)

Th1 : \(\hept{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\le2\end{cases}\Rightarrow-2\le x\le}2}\)

Th2 : \(\hept{\begin{cases}x+2< 0\\2-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>2\end{cases}\Rightarrow}x\in\varnothing}\)

Vậy \(Q_{min}=4\Leftrightarrow-2\le x\le2\)

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

20 tháng 2 2018

GTNN là 2018 <=> x = 0 , y = 0 

31 tháng 3 2018

Ta có : 

\(\left(x+y-3\right)^4\ge0\) \(\left(\forall x,y\inℚ\right)\)

\(\left(x-2y\right)^2\ge0\) \(\left(\forall x,y\inℚ\right)\)

\(\Rightarrow\)\(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-3\right)^4=0\\\left(x-2y\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-3=0\\x-2y=0\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=3\\x+y-3y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=3\\x+y=3y\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-y\\3=3y\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\y=1\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=3-1\\y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)

Vậy \(A_{min}=2018\) khi \(x=2\) và \(y=1\)

Chúc bạn học tốt ~ 

31 tháng 3 2018

Ta có \(\left(x+y-3\right)^4\ge0\) với mọi giá trị của x

\(\left(x-2y\right)^2\ge0\)với mọi giá trị của x

=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2\ge0\)với mọi giá trị của x

=> \(\left(x+y-3\right)^4+\left(x-2y\right)^2+2018\ge2018\)với mọi gt của x

=> GTNN của A là 2018.