thuc hien phet tinh
1/5.9+1/9.13+.....1/49.53
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{97.101}\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\frac{100}{101}\)
\(=\frac{25}{101}\)
1/1.5+/5.9+1/9.13..........+1/101.103
=1-1/5+1/5-1/7+1/9-1/13.........+1/101-1/103
=1-1/103
=102/103
XIN 5 TÍCH VÌ MẤT 5 PHÚT
OK
\(A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(A=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{1}{93.97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\frac{96}{97}=\frac{24}{97}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(A=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{1}{93.97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\frac{96}{97}=\frac{24}{97}\)
bạn sửa số cuối tử là 4 nhé
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}=1-\dfrac{1}{405}=\dfrac{404}{405}\)
\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{401.405}\\ =1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}\\ =1-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-...-\left(\dfrac{1}{401}-\dfrac{1}{401}\right)-\dfrac{1}{405}\\ =1-0-0-....-0-\dfrac{1}{405}\\ =1-\dfrac{1}{405}\\ =\dfrac{404}{405}\)
A= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
4A= 4/5.9+4/9.13+4/13.17+4/17.21+4/21.25
4A= (1/5-1/9)+(1/9-1/13)+(1/13-1/17)+(1/17-1/21)+(1/21-1/25)
4A= 1/5- 1/25
4A= 4/25
A= 4/25 :4
A= 1/25
\(4S=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\right)\)
=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{21.25}_{ }\)
=\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{21}-\frac{1}{23}\)
=\(\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
=> \(S=\frac{4}{25}:4=\frac{4}{25}.\frac{1}{4}=\frac{1}{25}\)
\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{21\times25}\)
\(S\times4=\frac{4}{5\times9}=\frac{4}{9\times13}+...+\frac{4}{21\times25}\)
\(S\times4=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\)
\(S\times4=\frac{1}{5}-\frac{1}{25}\)
\(S\times4=\frac{4}{25}\)
\(S=\frac{1}{25}\)
Tính chất của phân số bạn cần biết như sau:
\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)
Gọi biểu thức trên là A ,ta có:
\(A=\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+\dfrac{1}{13\cdot17}+\dfrac{1}{17\cdot21}+\dfrac{1}{21\cdot25}\)
\(4A=\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+\dfrac{4}{13\cdot17}+\dfrac{4}{17\cdot21}+\dfrac{4}{21\cdot25}\)
\(4A=\dfrac{9-5}{5\cdot9}+\dfrac{13-9}{9-13}+\dfrac{17-13}{13\cdot17}+\dfrac{21-17}{17\cdot21}+\dfrac{25-21}{21\cdot25}\)
Áp dụng tính chất phân số đã nêu ở trên, ta được:
\(4A=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{25}\)
\(4A=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{5}{25}-\dfrac{1}{25}=\dfrac{4}{25}\)
\(A=4A:4=\dfrac{4}{25}:4=\dfrac{16}{25}\)
Vậy \(A=\dfrac{16}{25}\)
\(=\frac{1}{4}.\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{37.41}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{41}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{41}\right)\)
\(=\frac{1}{4}.\frac{36}{205}=\frac{9}{205}\)
\(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{37.41}\)
\(=\frac{1}{4}\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{37.41}\right)\)
\(=\frac{1}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{41}\right)\)
\(=\frac{1}{4}\left(\frac{1}{5}-\frac{1}{41}\right)\)
\(=\frac{1}{4}.\frac{36}{205}=\frac{9}{205}\)
\(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{21.25}\\ =\dfrac{4\cdot\dfrac{1}{4}}{5.9}+\dfrac{4\cdot\dfrac{1}{4}}{9.13}+...+\dfrac{4\cdot\dfrac{1}{4}}{21.25}\\ =\dfrac{1}{4}\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{21.25}\right)\\ =\dfrac{1}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{21}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{25}\right)=\dfrac{1}{4}\left(\dfrac{5}{25}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\cdot\dfrac{4}{25}=\dfrac{1}{25}\)
`1/(5.9) + 1/(9.13) + ...+ 1/(21.25)`
`= 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/21 - 1/25`
`= 1/5 - 1/25`
`= 4/25`
giu minh voi
\(\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+...+\frac{1}{49\cdot53}\)
\(=\frac{1}{4}\left(\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{49\cdot53}\right)\)
\(=\frac{1}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{49}-\frac{1}{53}\right)\)
\(=\frac{1}{4}\left(\frac{1}{5}-\frac{1}{53}\right)\)
\(=\frac{1}{4}\cdot\frac{48}{265}\)
\(=\frac{12}{265}\)