Bài 1 Thực hiện phép tính rồi tính giá trị của biểu thức
a) A=3x.(3-x)-5x.(x+1)+8(x2-x-2) vs x=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=x\left(x+y\right)-x\left(y-x\right)=x^2+xy-xy+x^2=2x^2\)
Thay \(x=-3\) vào A, ta có:
\(A=2.\left(-3\right)^2=18\)
Vậy A=18
\(A=x\left(x+y\right)-x\left(y-x\right)=x\left(x+y\right)+x\left(x+y\right)=\left(x+y\right).2x=\left(-3+2\right).2.\left(-3\right)=6\)
Bài 2:
a: (2x-1)(x2+5x-4)
\(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
b: \(=-\left(10x^2+15x-8x-12\right)\)
\(=-\left(10x^2+7x-12\right)\)
\(=-10x^2-7x+12\)
c: \(=7x^2-28x-\left(14x^3-7x^2+28x+3x^2-3x+12\right)\)
\(=7x^2-28x-14x^3+4x^2-25x-12\)
\(=-14x^3+11x^2-53x-12\)
`a)A=x(x+y)-x(y-x)`
`=x^2+xy-xy+x^2`
`=2x^2`
Thay `x=-3`
`=>A=2.9=18`
`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`
`=8x^2+4xy+4xy+2y^2-y^2-2xy`
`=8x^2+y^2+6xy`
Thay `x=1/2,y=-3/4`
`=>B=8*1/4+9/16-9/4`
`=2+9/16-9/4`
`=9/16-1/4=5/16`
a: A=x^5-32
Khi x=3 thì A=3^5-32=243-32=211
b: B=x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+x^7-x^6+x^5-x^4+x^3-x^2+x-1
=x^8-1
=2^8-1=255
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b) x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
Ta có:
\(B=4x\left(2x+y\right)+2y\left(2x+y\right)-y\left(y+2x\right)\)
\(\Leftrightarrow B=\left(4x+2y-y\right)\left(2x+y\right)=\left(4x+y\right)\left(2x+y\right)=\left(4.\dfrac{1}{2}+\dfrac{-3}{5}\right)\left(2.\dfrac{1}{2}+\dfrac{-3}{5}\right)=\dfrac{14}{25}\)
a: \(x\left(x-y\right)+y\left(x+y\right)\)
\(=x^2-xy+xy+y^2\)
\(=x^2+y^2\)
=100
b: \(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy\)
\(=-2xy\)
Bài 1 :
a, \(\left(2x^2-3x-1\right)\left(5x+2\right)=10x^3+4x^2-15x^2-6x-5x-2\)
\(=10x^3-11x^2-11x-2\)
b, sửa đề : \(\left(-x^2+2x-3\right)\left(4x^2-2x+3\right)\)
\(=-4x^4+2x^3-3x^2+8x^3-4x^2+6x-12x^2+6x-9\)
\(=-4x^4+10x^3-19x^2+12x-9\)
Bài 2 :
\(B=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\)
Thay x = 1 ; y = 1 ; z = -1 vào biểu thức trên ta được
\(B=\left(1+1\right)\left(-2+1\right)+\left(1-1\right)\left(y-z\right)=2.\left(-1\right)=-2\)
Trả lời:
Bài 1:
a, ( 2x2 - 3x - 1 ) ( 5x + 2 )
= 10x3 + 4x2 - 15x2 - 6x - 5x - 2
= 10x3 - 11x2 - 11x - 2
b, ( - x2 + 2x - 3 ) ( 4x2 - 2 + 3 )
= - 4x4 - 2x2 + 3x2 + 8x3 - 4x + 6x - 12x2 + 6 - 9
= - 4x4 + 8x3 - 11x2 + 2x - 3
Bài 2:
B = ( 2x + y ) ( 2z + y ) + ( x - y ) ( y - z )
Thay x = 1, y = 1, z = - 1 vào B, ta được:
B = ( 2.1 + 1 ) [ 2.( - 1 ) + 1 ] + ( 1 - 1 ) [ 1 - ( - 1 )
= ( 2 + 1 ) ( - 2 + 1 ) + 0 . ( 1 + 1 )
= 3 . ( - 1 ) + 0
= - 3
Giúp vs ạ
\(A=-3\left(3+1\right)+5\left(1-1\right)+8\left(-1+1-2\right)\)
\(A=-28\)