Tìm x,y,z sao cho: A=(2xy2)2014+(3y2z4)2015 có giá trị bằng 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b)
\(A+B=\left(x^2y+2xy^2-7x^2y^2+x^4\right)+\left(5x^2y^2-2xy^2-x^2y-3x^4-1\right)\)
\(A+B=x^2y+2xy^2-7x^2y^2+x^4+5x^2y^2-2xy^2-x^2y-3x^4-1\)
\(A+B=(x^2y-x^2y)+(2xy^2-2xy^2)+(-7x^2y^2+5x^2y^2)+(x^4-3x^4)-1\)
\(A+B=-2x^2y^2-2x^4-1\)
c) \(-2.1^2.1^2-2.1^4-1=-3\)
CÂU C BẠN TÌM CÁCH LÀM NHA MIK KHÔNG BIẾT CÁCH TRÌNH BÀY
Cho x,y,z lớn hơn hoặc bằng 0, 2x+7y=2014 và 3x+5z=3031. Tìm giá trị lớn nhất của biểu thức A= x+y+z
![](https://rs.olm.vn/images/avt/0.png?1311)
Cộng hai vế ta được: 5(x+y+z)+2y=5045
Để 5(x+y+z) lớn nhất thì 2y nhỏ nhất
Mà 2y lớn hơn hoặc bằng 0 nên 2ymin=0
=> 5(x+y+z)max=5045=> A=x+y+z=5045 <=> y=0 => x=1012 => z=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{xyz-x^3+xyz-y^3+xyz-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{3xyz-x^3-y^3-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(-M=\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Xét đẳng thức phụ:
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=\left[\left(a +b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-ab\right]=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-abc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
Thay vào -M ta có:
\(-M=\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\Rightarrow M=-\frac{1}{2}\left(x+y+z\right)\)
Giờ thay: \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)
Ta có:
\(M=-\frac{1}{2}\left(2014^{2015}-20142015+20142015-2015^{2014}+2015^{2014}-2014^{2015}\right)=0\)
Ta có vì (2xy2)2014 >= 0
Lại có (3y2z4)>= 0 => (3y2z4)2015>= 0
Vậy để A = 0 <=> + (2xy2)2014=0 => x=y=0
+ (3y2z4)=0 => z=0
Vậy A =0 <=> x=y=z=0