CMR trong số 732 người bất kỳ bao giờ cũng có ít nhất 3 người có cùng ngày sinh.(ko kể năm nhuận )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận ucngf giống nhau.
Vậy trong 11 STN...
Có thể mình trình bày chưa chính xác lắm, bạn có thể sửa lại cách trình bày. ^ - ^
các số có thể tận cùng là từ 0 đến 9
có tất cả 10 số tận cùng mà có 11 số bất kì
suy ra trong 11 số bất kì tồn tại ít nhất hai số có tận cùng giống nhau.

c/s tận cùng có thể : 0,1,2,...,9 ( có 10 số )
Do 11 : 10 = 1 ( dư 1 )
Áp dụng nguyên lí Đi-rich-lê có ít nhất 2 số có tận cùng giống nhau
:Ta có:
11:10=1 dư 1
⇒ Chữ số tận cùng có thể có là: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; (có 10 số)
⇒ Có ít nhất 2 số có chữ số tận cùng giống nhau

Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận cùng giống nhau.
Vậy ...........

Lấy 11 số tự nhiên bất kỳ khi chia cho 10 thì được 11 số dư nhận 1 trong 10 số: 0; 1; 2; ...; 9. Theo nguyên lý Đirichlê phải có 2 số có cùng số dư, nên hiệu của 2 số đó chia hết cho 10. Khi đó hai số đó có chữ số tận cùng giống nhau

Gọi số học sinh đạt giải cả 3 môn là a (học sinh)
Gọi số học sinh đạt giải cả 2 môn là b (học sinh)
Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh)
Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải).
Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c.
Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên:
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ.
- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ.
Do vậy b= 3.
Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là:
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.
Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12.
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng).
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c)
Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải.
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (bạn).

Đặt số học sinh đạt giải cả 3 môn, 2 môn, 1 môn lần lượt là a, b, c (học sinh) Tổng số giải đạt được là: 3 x a + 2 x b + c = 15 (giải). Tổng số hs đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c. Vì bất kỳ 2 môn nào cũng có ít nhất 1 hs đạt giải cả 2 môn nên: - Có ít nhất 1 hs đạt giải cả 2 môn V và T. - Có ít nhất 1 hs đạt giải cả 2 môn T và NN. - Có ít nhất 1 hs đạt giải cả 2 môn V và NN. Do đó b bằng hoặc lớn hơn 3. Nếu a = 2 thì b bé nhất là 3, c bé nhất là 4, do đó tổng số giải bé nhất là: 3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Vì vậy a < 2, nên a = 1. Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12. Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng). Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại do điều kiện b < c) Vậy có 1 học sinh đạt 3 giải, 3 học sinh đạt 2 giải, 6 học sinh đạt 1 giải. Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (học sinh).

Đặt số học sinh đạt giải cả 3 môn, 2 môn, 1 môn lần lượt là a, b, c (học sinh)
Tổng số giải đạt được là:
3 x a + 2 x b + c = 15 (giải).
Tổng số hs đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c.
Vì bất kỳ 2 môn nào cũng có ít nhất 1 hs đạt giải cả 2 môn nên:
- Có ít nhất 1 hs đạt giải cả 2 môn V và T.
- Có ít nhất 1 hs đạt giải cả 2 môn T và NN.
- Có ít nhất 1 hs đạt giải cả 2 môn V và NN.
Do đó b bằng hoặc lớn hơn 3.
Nếu a = 2 thì b bé nhất là 3, c bé nhất là 4, do đó tổng số giải bé nhất là:
3 x 2 + 2 x 3 + 4 = 16 > 15 (loại).
Vì vậy a < 2, nên a = 1.
Ta có: 3 x 1 + 2 x b + c = 15
suy ra: 2 x b + c = 12.
Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng).
Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại do điều kiện b < c)
Vậy có 1 học sinh đạt 3 giải, 3 học sinh đạt 2 giải, 6 học sinh đạt 1 giải.
Đội tuyển đó có số học sinh là: 1 + 3 + 6 = 10 (học sinh).