K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

\(M=x^2+y^2-xy-x+y+1\)

=> \(2M=2x^2+2y^2-2xy-2x+2y+2\)

\(2M=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\)

\(2M=\left(x-y\right)^2+\left(1-x\right)^2+\left(y+1\right)^2\)

Áp dụng bđt Bunhiacopxki có:

\(\left(1^2+1^2+1^2\right)\cdot\left[\left(x-y\right)^2+\left(1-x\right)^2+\left(y+1\right)^2\right]\ge\left(x-y+1-x+y+1\right)^2\)

\(\Leftrightarrow3\cdot2M\ge4\)

\(\Leftrightarrow2M\ge\dfrac{4}{3}\Leftrightarrow M\ge\dfrac{2}{3}\)

Dấu ''='' xảy ra khi \(\dfrac{1}{x-y}=\dfrac{1}{1-x}=\dfrac{1}{y+1}\)

<=> \(x-y=1-x=y+1\)

<=> \(x=\dfrac{1}{3};y=-\dfrac{1}{3}\)

Vậy \(Min_M=\dfrac{2}{3}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=-\dfrac{1}{3}\end{matrix}\right.\)

3 tháng 6 2018

2M=2x2+2y2-2xy-2x+2y+2

=(x2-2xy+y)+(x2-2x+1) +(y2+2y+1)

=(x-y)2+(x-1)2 +(y+1)2

=> 2M \(\ge0\forall x;y\)

=> M\(\ge0\)

=> Min M=0 khi x=1 và y=-1

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+2^2\geq 4x$

$y^2+2^2\geq 4y$

$2(x^2+y^2)\geq 4xy$

$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$

$\Rightarrow x^2+y^2\geq 8$

Vậy $P_{\min}=8$ khi $x=y=2$

15 tháng 4 2021

\(A=x^2+y^2\) hả bạn?

5 tháng 6 2016

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$

$\Rightarrow 3(x^2+y^2)\geq 6xy$

$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$

$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$

Cộng theo vế các BĐT trên:

$4(x^2+y^2)+18\geq 6(xy+x+y)=90$

$\Rightarrow x^2+y^2=18$

Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$

AH
Akai Haruma
Giáo viên
20 tháng 6 2021

Sầu Riêng: của em nếu $x,y$ dương thì đúng. Còn trong bài $x,y$ thực thì đến đoạn $(x+y+2)^2\geq 64$ thì không khẳng định $x+y\geq 6$ được nha.

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự