Chứng minh 5n+1 - 55n chia hết cho 54 (n là số tự nhiên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có : 55n + 1 – 55n
= 55n.55 – 55n
= 55n(55 – 1)
= 55n.54
Vì 54 chia hết cho 54 nên 55n.54 luôn chia hết cho 54 với mọi số tự nhiên n.
Vậy 55n + 1 – 55n chia hết cho 54.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2n+3 chia hết cho n- 2
=>(2n+3)- 2. (n- 2) chia hết cho n- 2
=>2n +3 - 2n +4 chia hết cho n- 2
=>7 chia hết cho n- 2
=> n- 2 thuộc Ư(7) ={......}
RỒI KẺ bẢNG Là XONG
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề lại là 55^n+1-55^n
55^n+1-55^n
=55^n(55-1)
=55^n.54 chia hết cho 54 với mọi số tự nhiên n