Tìm số nguyên tố p sao cho p+6 ; p+8 ; p+12 ; p+14 đều là số nguyên tố .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
phàn dưới mik chép thiếu nha, đề bài đầy đủ là
tìm số nguyên tố p sao cho p+4, p+6, p+10, p+12, p+16 cũng là số nguyên tố
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
p = 5
Thay vào :
p + 2 = 5 + 2 = 7 ( đúng )
p + 6 = 5 + 6 = 11 ( đúng )
p + 8 = 5 + 8 = 13 ( đúng )
sao cậu dott thẻ bài dễ thế này mà không làm được trên lớp phải chú ý nghe cô giảng
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì p nguyên tố nên p là số tự nhiên ⇒ p có dạng 3k; 3k + 1; 3k + 2 ( k ϵ N* )
Nếu p = 3k ⇒ p ⋮ 3 mà p nguyên tố nên p = 3
Khi đó p + 6 = 3 + 6 = 9 ⋮ 3 mà 9 > 3 nên 9 là hợp số ( loại )
Nếu p = 3k + 1 ⇒ p + 2 = 3k + 3 = 3( k + 1 ) ⋮ 3 mà 3( k + 1 ) > 3 nên 3k + 1 là hợp số ( loại )
Nếu p = 3k + 2 ⇒ p + 2 = 3k + 4
p + 6 = 3k + 8
p + 8 = 3k + 10
p + 14 = 3k + 16
Vậy p = 3k + 2 thì p + 2; p + 6; p + 8; p + 14 là số nguyên tố
Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố