cho các số x, y, z thỏa mãn x+y+z=\(\dfrac{3}{2}\) . chứng minh rằng x^2+y^2+z^2≥\(\dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài chắc chắn là có vấn đề
Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)
Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra
Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)
Làm tương tự với 2 số hạng còn lại, sau đó cộng vế
Nhưng đẳng thức không xảy ra.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)
\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)
Thật vậy, ta có:
\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)
\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)
\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT cô si với ba số không âm ta có :
1(x+1)2+x+18+x+18≥33√164=341(�+1)2+�+18+�+18≥31643=34
=> 1(x+1)2≥34−x+141(�+1)2≥34−�+14 (1)
Dấu '' = '' xảy ra khi x = 1
CM tương tự ra có " 1(y+1)2≥34−y+141(�+1)2≥34−�+14(2) ; 1(z+1)2≥34−z+141(�+1)2≥34−�+14 (3)
Dấu ''= '' xảy ra khi y = 1 ; z = 1
Từ (1) (2) và (3) => 1(x+1)2+1(y+1)2+1(z+1)2≥34⋅3−x+y+z+341(�+1)2+1(�+1)2+1(�+1)2≥34⋅3−�+�+�+34≥94−33√xyz+34=94−64=34≥94−3���3+34=94−64=34
BĐT được chứng minh
Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1
:()
![](https://rs.olm.vn/images/avt/0.png?1311)
Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)
\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\)
(vì \(2013=3.671=3\left(xy+yz+zx\right)\))
\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)
\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)
\(=\dfrac{1}{x+y+z}\)
ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)
\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)
\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))
Vậy ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
Áp dụng BĐT Bunhyaxcopki, ta có:
\(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(\dfrac{3}{2}\right)^2\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\dfrac{9}{4}\)
\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{3}{4}\)
ủng hộ cách khác không xài bđt bunhia:
\(x^2+y^2+z^2\ge\dfrac{3}{4}\)
\(\Leftrightarrow x^2+y^2+z^2-x-y-z\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Leftrightarrow x^2+y^2+z^2-x-y-z+\dfrac{3}{4}\ge0\)
\(\Leftrightarrow\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2-y+\dfrac{1}{4}\right)+\left(z^2-z+\dfrac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)(luôn đúng \(\forall x+y+z=\dfrac{3}{2}\))