🎁 OLM khai giảng khóa học hè. XEM NGAY!!!
OLM Class: Học trực tiếp cùng giáo viên OLM (hoàn toàn mới)!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho M=1/2^2+1/3^2+1/4^2+....+1/50^2
CMR:M<3/4
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(M< \dfrac{1}{4}+\left(\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}+M_1\)
\(M_1=\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{48}-\dfrac{1}{49}\right)+\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(M_1=\dfrac{1}{2}+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{49}+\dfrac{1}{49}\right)-\dfrac{1}{50}=\dfrac{1}{2}-\dfrac{1}{50}\)
\(M< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{3}{4}-\dfrac{1}{50}< \dfrac{3}{4}=>dpcm\)
Cho M=1+1/2+1/3+....+1/2100-1
CMR:M<100
M>50
Cho M=1+1/2+1/3+....1/2100_1
Cho M=\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+...+39}\)
CMR:M<\(\frac{2}{3}\)
CMR:M=1/22+1/32+1/42+...+1/n2<1
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang 1/4<M<4/9
CHo A=1/3^2+1/4^2+1/5^2+...+1/50^2. Chứng tỏ rằng 1/4<A<4/9
Cho A = 1/3^2 + 1/4^2 + 1/5^2 +...+ 1/50^2
Chung minh 1/4 < A < 4/9
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(M< \dfrac{1}{4}+\left(\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}+M_1\)
\(M_1=\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{48}-\dfrac{1}{49}\right)+\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(M_1=\dfrac{1}{2}+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{49}+\dfrac{1}{49}\right)-\dfrac{1}{50}=\dfrac{1}{2}-\dfrac{1}{50}\)
\(M< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{3}{4}-\dfrac{1}{50}< \dfrac{3}{4}=>dpcm\)