Chinh phục Đấu trường Tri thức OLM hoàn toàn mới, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho M=1/2^2+1/3^2+1/4^2+....+1/50^2
CMR:M<3/4
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(M< \dfrac{1}{4}+\left(\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}+M_1\)
\(M_1=\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{48}-\dfrac{1}{49}\right)+\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(M_1=\dfrac{1}{2}+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{49}+\dfrac{1}{49}\right)-\dfrac{1}{50}=\dfrac{1}{2}-\dfrac{1}{50}\)
\(M< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{3}{4}-\dfrac{1}{50}< \dfrac{3}{4}=>dpcm\)
Cho M=1+1/2+1/3+....+1/2100-1
CMR:M<100
M>50
Cho M=1+1/2+1/3+....1/2100_1
Cho M=\(\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+...+39}\)
CMR:M<\(\frac{2}{3}\)
CMR:M=1/22+1/32+1/42+...+1/n2<1
Cho A=1/3^2+1/4^2+1/5^2+...+1/50^2
Chung to rang 1/4<M<4/9
CHo A=1/3^2+1/4^2+1/5^2+...+1/50^2. Chứng tỏ rằng 1/4<A<4/9
Cho A = 1/3^2 + 1/4^2 + 1/5^2 +...+ 1/50^2
Chung minh 1/4 < A < 4/9
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(M< \dfrac{1}{4}+\left(\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)=\dfrac{1}{4}+M_1\)
\(M_1=\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)...+\left(\dfrac{1}{48}-\dfrac{1}{49}\right)+\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(M_1=\dfrac{1}{2}+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...+\left(-\dfrac{1}{49}+\dfrac{1}{49}\right)-\dfrac{1}{50}=\dfrac{1}{2}-\dfrac{1}{50}\)
\(M< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{50}=\dfrac{3}{4}-\dfrac{1}{50}< \dfrac{3}{4}=>dpcm\)