Tìm a sao cho đa thức \(21x^2+x^4+x-9x^3+a\) chia hết cho x2-x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow4x^3+16x^2+28x-x^2-4x-7+10+a⋮x^2+4x+7\)
hay a=-10
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt đa thức thương là \(Q_{\left(x\right)}\)
\(\Rightarrow\)Để \(x^4-9x^3+21x^2+ax+b⋮x^2-x-2\)
\(\text{thì }\Rightarrow x^4-9x^3+21x^2+ax+b=\left(x^2-x-2\right)Q_{\left(x\right)}\\ =\left(x-2\right)\left(x+1\right)Q_{\left(x\right)}\)
Đẳng thức trên luôn đúng \(\forall x\)
nên lần lượt cho \(x=2;x=-1\)
\(\text{Ta được : }\left\{{}\begin{matrix}28+2a+b=0\\31-a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=-28\\a-b=31\end{matrix}\right.\\ \Leftrightarrow\left(2a+b\right)+\left(a-b\right)=-28+31\\ \Leftrightarrow3a=3\\ \Leftrightarrow a=1\\ \Leftrightarrow1-b=31\\ \Leftrightarrow b=-30\)
Vậy để \(x^4-9x^3+21x^2+ax+b⋮x^2-x-2\)
thì \(a=1;b=-30\)
Có: \(x^2-x-2=\left(x-2\right)\left(x+1\right)\)
=> Để đa thức:
\(A=x^4-9x^3+21x^2+x+a⋮x^2-x-2\)
<=> \(A⋮\left(x-2\right);A⋮\left(x+1\right)\)
+) S/dung lược đồ Hooc-le:
=> \(2\cdot15+a=0\Rightarrow a=-30\)
+)
=> \(\left(-1\right)\cdot\left(-30\right)+a=0\Rightarrow a=-30\)
Vậy a = -30 thì đa thức A chia hết cho x2 - x - 2