Chứng minh \(n^3+6n^2+8n\text{ }⋮\text{ }48\text{ }\left(n\text{ }ch\text{ẵn}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


48 =3.16 =3.2.8
cần c/m chia hết ch 3.2.8
\(\left\{{}\begin{matrix}A=n^3+6n^2+8n\\n=2k;k\in Z\end{matrix}\right.\)
\(A=8.k^3+24k^2+16k=8k\left(k^2+3k+2\right)\)
\(A=8k\left[k^2-1+3k+3\right]=8k\left(k-1\right)\left(k+1\right)+8.3.k\left(k+1\right)\)
\(A=8k\left(k+1\right)\left(k+2\right)\)
có k(k+1)(k+2) ba số nguyên liên tiếp => chia hết cho 6
=> A chia hết cho 8.6 =48 => dpcm

Vì n lẻ nên n=2k+1
\(n^4-10n^2+9\)
\(=\left(n^2-1\right)\left(n^2-9\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\cdot\left(2k-2\right)\cdot\left(2k+4\right)\)
\(=16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì k-1;k+1;k;k+2 là bốn số liên tiếp
nên \(\left(k-1\right)\cdot k\cdot\left(k+1\right)\cdot\left(k+2\right)⋮4!=24\)
\(\Leftrightarrow16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮384\)

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do 5n(n-1)(n+1) có dạng 5k. Do đó chia hết cho 5.
Lại có: n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên tích chúng sẽ tồn tại thưa số chia hết cho 3, chia hết cho 2.
Do đó5n(n-1)(n+1) \(⋮30\)
Mặt khác: n(n-1)(n+1)(n-2(n+2) là tích 5 số tự nhiên liên tiêp, do đó tích của chúng có tồn tại 1 thừa số chi hết cho, 5, một thwuaf số chia hết cho 3, một thưa só chia hét cho 2.
Do đó n5-n chia hết cho 30
\(A=n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Đặt n = 2k+1 Thay vào A có: \(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
=> \(A⋮16\)
Lại có k;k-1;k=1;k=2 là 3 số nguyên liên tiếp do đó tích chung số chia hét cho 2,3,4(3 số nguyên tố cùng nhau). Nên A chia hết 24
=> A\(A⋮384\)

1. Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học trực tuyến OLM
3.
\(a,A=n^3-n+7=n\left(n-1\right)\left(n+1\right)+7\)
Có \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số tự nhiên lt với \(n\in N\) nên chia hết cho 6
Mà 7 ko chia hết cho 6 nên A không chia hết cho 6
\(b,B=n^3-n=n\left(n-1\right)\left(n+1\right)\)
Như câu a thì B chia hết cho 6 hay B chia hết cho 3
Ta thấy n lẻ nên \(n=2k+1\left(k\in N\right)\)
\(\Rightarrow B=n^3-n=\left(n-1\right)n\left(n+1\right)\\ =\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)\\ =2k\left(2k+1\right)\left(2k+2\right)\\ =4k\left(k+1\right)\left(2k+1\right)\)
Mà k+1 và 2k+1 là 2 số tự nhiên lt nên chia hết cho 2
\(\Rightarrow B⋮4\cdot2\left(2k+1\right)=8\left(2k+1\right)⋮8\)
Vì B chia hết cho cả 3;8 và \(\left(3;8\right)=1\) nên B chia hết 24
\(c,C=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Ta thấy đây là 4 số tự nhiên lt với \(n\in N\) nên chia hết cho 24

Dài lắm bn ak,bạn vào google đăng cái này rồi tìm ra kết quả của Online Math nó có cái bài giống thế này chỉ khác 1 tẹo thôi.

a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)
\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)
b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)
=4
Biến đổi thành : \(n\left(n+2\right)\left(n+4\right)\) rồi thay n=2k vào ta được 8k(k+1)(k+2)