cho tam giác ABC (góc A =90độ)AH vuông góc với BC biết AB/AC=3/4 AH=9cm tính AB AC BC BH CH
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Những câu hỏi liên quan
NT
cho tam giác ABC vuông tại A , vẽ AH vuông góc với BC tại H biết AB= 12cm , AC = 9cm . Tính AH,BH,CH
0
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
MN
30 tháng 1 2020
A B C H 20 cm 9cm 16 cm
*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ACH, ta có :
\(\Rightarrow\)AC2 = HC2 + AH2
\(\Rightarrow\)202 = 162 + AH2
\(\Rightarrow\)AH2 = 400 - 256
\(\Rightarrow\)AH2 = 144
\(\Rightarrow\)AH = 12 (cm)
*) Áp dụng định lí Pythagoras vào \(\Delta\)vuông ABH, ta có :
\(\Rightarrow\)AB2 = AH2 + HB2
\(\Rightarrow\)AB2 = 122 + 92
\(\Rightarrow\)AB2 = 225
\(\Rightarrow\)AB = 15 (cm)
Vậy AB = 15 cm; AH = 12 cm
Lời giải:
Vì $\frac{AB}{AC}=\frac{3}{4}$ nên đặt $AB=3a; AC=4a$ với $a>0$
Áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$
$\frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{1}{81}$
$\frac{25}{144a^2}=\frac{1}{81}$
$a=3,75$ (cm)
Do đó:
$AB=3a=11,25$ (cm)
$AC=4a=15$ (cm)
$BC=\frac{AB.AC}{AH}=\frac{11,25.15}{9}=18,75$ (cm)
Áp dụng định lý Pitago:
$BH=\sqrt{AB^2-AH^2}=\sqrt{11,25^2-9^2}=6,75$ (cm)
$CH=BC-BH=18,75-6,75=12$ (cm)
Hình vẽ: