K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Bài 1:

\(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" khi \(x=\frac{1}{2}\)

Vậy \(Min=\frac{3}{4}\) khi \(x=\frac{1}{2}\)

Bài 2:

\(x^2+10x+2041=x^2+10x+25+2016\)

\(=\left(x^2+10x+25\right)+2016\)

\(=\left(x+5\right)^2+2016\ge2016\)

Dấu "=" khi \(x=-5\)

Vậy \(Min=2016\) khi \(x=-5\)

14 tháng 12 2016

nhìn là bit tu lam

10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^

28 tháng 7 2018

 \(A=2018-\left|x-7\right|-\left|y+2\right|\)

Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)

\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)

Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)

Tham khảo~

27 tháng 8 2016

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

27 tháng 8 2016

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0

16 tháng 12 2015

Vì |y + 3| luôn lớn bằng 0 với mọi y

=> 100 - |y + 3| luôn bé bằng 0

=> B luôn bé bằng 0

Dấu "=" xảy ra <=> |y + 3| = 0

=> y + 3 = 0

=> y = -3

Vậy Max B = 100 tại y = -3

16 tháng 12 2015

Ta có - |y - 3| < 0

=> B = 100 - |y - 3| < 100

GTLN của B là 100 <=> |y - 3| = 0 <=> y = 3

17 tháng 2 2017

              \(A=\)\(36x^2\)\(+\)\(24x\)\(+7\)

\(\Leftrightarrow\)\(A=36x^2+24x+4+3\)

\(\Leftrightarrow\)\(A=\left(6x+2\right)^2+3\)

Vì  \(\left(6x+2\right)^2\)\(\ge0\) nên \(A\ge3\)

\(\Rightarrow GTNN\)của \(A\)là \(3\) khi \(\left(6x+2\right)^2=0.\)

\(\Leftrightarrow\)\(x=-\frac{1}{3}\)

Vậy GTNN  của \(A\)là \(3\)khi  \(x=-\frac{1}{3}\)

 
 
4 tháng 10 2015

B=|x+2015|+2016

Ta có |x+2015|>hoặc=0 với mọi x

=>B>hoặc=2016

Vậy min B=2016 khi x=2015

C=1982-|x-6|

Ta có -|x-6|<hoặc=0

=>C>hoặc=1982

Vậy max B=1982 khi x=6