K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

X=2005,Y=4

18 tháng 3 2017

\(23-y^2\ge0\Rightarrow y^2\le23\Rightarrow-23\le y\le23\)

\(\left\{{}\begin{matrix}y\in N\\y^2=\left\{0,1,4,9,16\right\}\end{matrix}\right.\) \(\left\{{}\begin{matrix}23-y^2=\left\{23,22,19,14,7\right\}\\\end{matrix}\right.\)=> Vô Nghiệm.

Bài 1: 

Để E nguyên thì \(x+5⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{3;1;9;-5\right\}\)

9 tháng 1 2022

Thank you.

24 tháng 12 2021

\(23-y^2=7\left(x-2004\right)^2\ge0\\ \Leftrightarrow y^2\le23\)

Mà \(y\in N\Leftrightarrow y\in\left\{0;1;2;3;4\right\}\)

Với \(y=0\Leftrightarrow7\left(x-2004\right)^2=23\left(loại\right)\)

Với \(y=1\Leftrightarrow7\left(x-2004\right)^2=22\Leftrightarrow\left(x-2004\right)^2=\dfrac{22}{7}\left(loại\right)\)

Với \(y=2\Leftrightarrow7\left(x-2004\right)^2=19\Leftrightarrow\left(x-2004\right)^2=\dfrac{19}{7}\left(loại\right)\)

Với \(y=3\Leftrightarrow7\left(x-2004\right)^2=14\Leftrightarrow\left(x-2004\right)^2=2\left(loại\right)\)

Với \(y=4\Leftrightarrow7\left(x-2004\right)^2=7\Leftrightarrow\left[{}\begin{matrix}x-2004=1\\x-2004=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2005\\x=2003\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2005;4\right);\left(2003;4\right)\)

17 tháng 1 2018

a) \(S=3^{n+2}-2^{n+2}+3^n-2^n\)

\(S=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(S=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)

\(S=3^n.10-2^n.5\)

\(S=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10⋮10\left(đpcm\right)\)

b) Ta có: \(\left\{{}\begin{matrix}7\left(x-2004\right)^2\ge0\\7\left(x-2004\right)^2⋮7\end{matrix}\right.\)

\(\Rightarrow y^2\le23\)\(23-y^2⋮7\)

\(\Rightarrow23-y^2\in B\left(7\right)=\left\{0;7;14;21;28;...\right\}\)

\(y^2\in N\)\(y^2\le23\)

\(\Rightarrow23-y^2=\left[{}\begin{matrix}7\\14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4\\y=3\end{matrix}\right.\)

Thay vào là tìm được x

17 tháng 1 2018

a, S= \(3^{n+2}-2^{n+2}-3^n-2^n\)
= \(3^n.3^2-2^n.2^2+3^n-2^n\)
= \(3^n.3^2+3^n-2^n.2^2-2n\)
= \(3^n.9+3^n-\left(2^n.4+2^n\right)\)
= \(3^n\left(9+1\right)-\left[2^n\left(4+1\right)\right]\)
= \(3^n.10-2^n.5\)
= \(3^n.10-2.2^{n-1}.5\)
= \(3^n.10-2^{n-1}.10\)
= 10.( \(3^n-2^{n-1}\))
Vì 10 chia hết cho 10 nên 10.(\(3^n-2^{n-1}\)) chia hết cho 10
=> S chia hết cho 10

28 tháng 3 2018

Bạn tham khảo ở đây nhé

Câu hỏi của Mai Nguyên- Toán lớp 7- Học toán với Online Math

                                  Chúc bn hk tốt!
 

28 tháng 3 2018

đoàn khánh linh giúp mk đc k 

mk k tìm đc câu hỏi của mai nguyên