- Tím số nguyên tố p để p+2; p+4 đều là số nguyên tố .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Đặt d là ƯC của 3n+2 và 5n+3 => 3n+2 và 5n+3 cùng chia hết cho d
=> 5(3n+2)=15n+10 chia hết cho d và 3(5n+3)=15n+9 chia hết cho d nên
5(3n+2)-3(5n+3)=1 cũng chia hết cho d => d là ước của 1 => d=1
=> 3n+2 và 5n+3 là hai số nguyên tố cùng nhau
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây