Cho tứ giác ABCD nội tiếp đg rèn tâm O bk R. Cmr nếu AB2+CD2 =4R2 thì AC vg góc vs BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Kẻ đường kính BB’. Nối B’A, B’D, B’C.
Ta có: = 90° ( góc nội tiếp chắn nửa đường tròn)
⇒ AC // B'D ( cùng vuông góc với BD)
Suy ra, tứ giác ADB’C là hình thang
Vì ADB’C nội tiếp đường tròn (O) nên ADB’C là hình thang cân
⇒ CD = AB'
⇒ A B 2 + C D 2 = A B 2 + A B ' 2
Mà tam giác BAB’ vuông tại A do = 90° ( góc nội tiếp chắn nửa đường tròn)
⇒ A B 2 + C D 2 = A B 2 + A B ' 2 = 2 R 2 = 4 R 2 (đpcm)


Bài này là định lý khá cơ bản của tứ giác điều hoà.
Do AM, AC đẳng giác của góc BAD nên dễ dàng chứng minh được:
\(\widehat{BAM}=\widehat{CAD}\).
Mặt khác do tứ giác ABCD nội tiếp nên \(\widehat{ABM}=\widehat{ACD}\).
Từ đó \(\Delta ABM\sim\Delta ACD(g.g)\)
\(\Rightarrow\dfrac{AB}{BM}=\dfrac{AC}{CD}\Rightarrow AB.CD=BM.AC\).
Chứng minh tương tự, ta cũng có \(AD.BC=CM.AC\).
Mà BM = CM nên \(AB.CD=AD.BC\) hay tứ giác ABCD điều hoà.
(Định lý đảo vẫn đúng).

Kéo dài DA và CB lần lượt về phía A và B cắt nhau tại E
Xét tam giác DCE có \(\widehat{DEC}\) = 1800 - (\(\widehat{EDC}\) + \(\widehat{ECD}\)) = 1800- 900 = 900
⇒\(\Delta\)DEC vuông tại E
Xét \(\Delta\)AEB Theo pytago ta có: AE2 + BE2 = AB2
Tương tự ta có: DE2 + CE2 = DC2
Cộng vế với vế ta có: AE2 + BE2 + DE2 + CE2 = AB2+DC2
AE2 + CE2+BE2+DE2 = AB2+DC2 (1)
Xét \(\Delta\)AEC theo pytago ta có: AE2+ CE2 = AC2
Tương tự ta có: BE2 + DE2 = BD2
Cộng vế với vế ta có: AE2 + CE2 + BE2+ DE2 = AC2 + BD2 (2)
Từ (1) và (2) ta có: AC2 + BD2 = AB2 + DC2(đpcm)