\(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\) gpt giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



mình nghĩ đề vậy mới làm đc :))
\(x-2\sqrt{1-x}-4\sqrt{2x+4}+10=0\)
\(\Leftrightarrow1-x-2\sqrt{1-x}+1+2x+4-4\sqrt{2x+4}+4=0\)
\(\Leftrightarrow\left(\sqrt{1-x}-1\right)^2+\left(\sqrt{2x+4}-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1-x}=1\\\sqrt{2x+4}=2\end{matrix}\right.\Rightarrow x=0\)

Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)

a) \(\sqrt{9-12x+4x^2}=4\Leftrightarrow\sqrt{\left(2x\right)^2-2.2x.3+9}=4\Leftrightarrow\sqrt{\left(2x-3\right)^2}=4\left(1\right)\)Nếu \(x< \dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow3-2x=4\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)(nhận)
Nếu \(x\ge\dfrac{3}{2}\)
\(\left(1\right)\Leftrightarrow2x-3=4\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\)(nhận)
Vậy S=\(\left\{\dfrac{-1}{2};\dfrac{7}{2}\right\}\)
b) \(\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}=1\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+1\right)^2}=1\left(1\right)\)Nếu x<-1
\(\left(1\right)\Leftrightarrow1-x+\left[-\left(x+1\right)\right]=1\Leftrightarrow1-x+\left(-x-1\right)=1\Leftrightarrow1-x-x-1=1\Leftrightarrow-2x=1\Leftrightarrow x=\dfrac{-1}{2}\)(loại)
Nếu -1≤x<1
\(\left(1\right)\Leftrightarrow1-x+x+1=1\Leftrightarrow2=1\)(loại)
Nếu x≥1
\(\left(1\right)\Leftrightarrow x-1+x+1=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)(loại)
Vậy S=∅

ĐK : tự làm :
Đặt \(\sqrt{2x+3x-\sqrt{x+2}}=a;\sqrt{2x+4+\sqrt{x+2}}=b\)
TA có : \(b^2-a^2=1+2\sqrt{x+2}=a+b\)
=> b - a = 1 => b = 1 + a
=> \(\sqrt{2x+4+\sqrt{x+2}}=1+\sqrt{2x+3-\sqrt{x+2}}\)
=> \(2x+4+\sqrt{x+2}=1+2x+3-\sqrt{x+2}+2\sqrt{2x+3-\sqrt{x+2}}\)
=> \(2\sqrt{x+2}=2\sqrt{2x+3-\sqrt{x+2}}\)
=> \(x+2=2x+3-\sqrt{x+2}\)
=> \(\sqrt{x+2}=x+1\)
Đk: x>= -4 , trục căn là đc thui bạn pt: \(\dfrac{2x^2+x+9-2x^2+x-1}{\sqrt{2x^2+x-9}-\sqrt{2x^2-x+1}}\) = x+4 => (x+4)(\(\dfrac{2}{\sqrt{2x^2+x+9}-\sqrt{2x^2-x+1}}\) -1) =0 (1) => x=-4 (loại) hoặc \(\dfrac{2}{\sqrt{2x^2+x+9}-\sqrt{2x^2-x+1}}\) =1( quy đồng tìm nghiệm nốt nhá) . nhưng nhớ bấm lại để xét xem nó thỏa mãn hay ko nhá.