K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

\(\dfrac{x}{9}=\dfrac{y}{15}vàx^2-y^2=-16\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{x^2}{81}=\dfrac{y^2}{225}=\dfrac{x^2-y^2}{81-225}=\dfrac{-16}{-144}=\dfrac{1}{9}\)

\(\dfrac{x^2}{81}=\dfrac{1}{9}\Rightarrow x^2=81.\dfrac{1}{9}=9\Rightarrow x=\sqrt{9}=3\)

\(\dfrac{y^2}{225}=\dfrac{1}{9}\Rightarrow y^2=225.\dfrac{1}{9}=25\Rightarrow y=\sqrt{25}=5\)

Vậy x=3 ; y=5

10 tháng 11 2017

Đặt \(\dfrac{x}{9}=\dfrac{y}{15}=a\)
=> x = 9a ; y = 15a
Ta có: x2 - y2 = - 16
<=> (9a)2 - (15a)2 = - 16
<=> 81a2 - 225a2 = - 16
<=> -144a2 = - 16
<=> a2 = \(\dfrac{1}{9}\)
<=> a = \(\dfrac{1}{3}\)\(-\dfrac{1}{3}\)
Trường hợp 1: Với a = \(\dfrac{1}{3}\) , ta có:
\(x=9a=>x=9.\dfrac{1}{3}=3 \)
\(y=15a=>y=15.\dfrac{1}{3}=5\)
Trường hợp 2: Với a = \(-\dfrac{1}{3}\) , ta có:
\(x=9a=>x=9.\dfrac{-1}{3}=-3\)
\(y=15a=>y=15.\dfrac{-1}{3}=-5\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

a. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$

$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$

b. Áp dụng tính chất dãy tỉ số bằng nhau:

$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$

$\Rightarrow x=(-84):7=-12; y=-84:3=-28$

 

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$

$\Rightarrow x=2.5=10; y=9.2=18$

d. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$

$\Rightarrow x=16.15=240; y=7.16=112$

e.

Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$

Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$

Với $k=10$ thì $x=5k=50; y=2k=20$

Với $k=-10$ thì $x=5k=-50; y=2k=-20$

 

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a) Vì \(\dfrac{x}{y} = \dfrac{5}{3} \Rightarrow \dfrac{x}{5} = \dfrac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{x + y}}{{5 + 3}} = \dfrac{{16}}{8} = 2\\ \Rightarrow x = 2.5 = 10\\y = 2.3 = 6\end{array}\)

Vậy x=10, y=6

b) Vì \(\dfrac{x}{y} = \dfrac{9}{4} \Rightarrow \dfrac{x}{9} = \dfrac{y}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

 \(\begin{array}{l}\dfrac{x}{9} = \dfrac{y}{4} = \dfrac{{x - y}}{{9 - 4}} = \dfrac{{ - 15}}{5} =  - 3\\ \Rightarrow x = ( - 3).9 =  - 27\\y = ( - 3).4 =  - 12\end{array}\)

Vậy x = -27, y = -12.

31 tháng 10 2021

Mn ơi giúp mk với , please !!!

31 tháng 10 2021

1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)

=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)

2. Ta có:

\(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

28 tháng 8 2023

a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)

b) \(\left|2x+3\right|=x+2\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)

28 tháng 8 2023

Đính chính

Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)

20 tháng 8 2021

1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)

\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)

\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)

13 tháng 10 2021

\(\dfrac{x}{y}=\dfrac{9}{7}\)\(\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\)\(\dfrac{y}{7}=\dfrac{z}{3}\)

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{15}{5}=3\)

\(\left\{{}\begin{matrix}x=3.9=27\\y=3.7=21\\z=3.3=9\end{matrix}\right.\)

2x^3-1=15

=>2x^3=16

=>x=2

(x+16)/9=(y-5)/16=(z+9)/25

=>(y-5)/16=(z+9)/25=2

=>y-5=32 và z+9=50

=>y=37 và z=41

B=x+y+z=2+37+41=80

25 tháng 5 2022

Ta có: \(2x^3-1=15\Leftrightarrow x^3=8\Rightarrow x=2\)

\(\Rightarrow\dfrac{18}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\Rightarrow\left\{{}\begin{matrix}\dfrac{y-25}{16}=2\Rightarrow y=57\\\dfrac{z+9}{25}=2\Rightarrow z=41\end{matrix}\right.\)

Vậy \(B=x+y+z=2+57+41=100\)

25 tháng 5 2022

`2x^3-1=15=>2x^3=16=>x^3=8=>x=2`

Có:`[x+16]/9=[y-25]/16`

`=>[2+16]/9=[y-25]/16=>y=57`

Có:`[x+16]/9=[z+9]/25`

`=>[2+16]/9=[z+9]/25=>z=41`

Ta có:`B=x+y+z=2+57+41=100`

16 tháng 1 2024

\(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\) 

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=30\Rightarrow x=60\\\dfrac{y}{\dfrac{3}{2}}=30\Rightarrow y=45\\\dfrac{z}{\dfrac{4}{3}}=30\Rightarrow z=40\end{matrix}\right.\)