Giúp em với ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



1. Going in the rain is interesting.
2. Don't forget to learn by heart new words.
3. If he doesn't apologize me, I won't forgive him.
4. My grandmother is the most helpful (person) in my village.
5. What is the price of that hat?
6. Your book is different from my book.

Bài 3:
a: \(15x^2y-10xy^2=5xy\left(3x-2y\right)\)
b: \(x^2+2xy+y^2-9=\left(x+y-3\right)\left(x+y+3\right)\)

ĐKXĐ cho căn thức: \(x\ge-\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{3x+1-\sqrt{2x+1}}{x^2-x}=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{3}{x}+\dfrac{1}{x^2}-\sqrt{\dfrac{2}{x^3}+\dfrac{1}{x^4}}}{1-\dfrac{1}{x}}=\dfrac{0}{1}=0\)
\(\Rightarrow y=0\) là TCN
\(\lim\limits_{x\rightarrow0}\dfrac{3x+1-\sqrt{2x+1}}{x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{9x^2+4x}{x\left(x-1\right)\left(3x+1+\sqrt{2x+1}\right)}=\lim\limits_{x\rightarrow0}\dfrac{9x+4}{\left(x-1\right)\left(3x+1+\sqrt{2x+1}\right)}\)
\(=\dfrac{4}{-1\left(1+1\right)}\) hữu hạn
\(\Rightarrow x=0\) không phải tiệm cận
\(\lim\limits_{x\rightarrow1}\dfrac{3x+1-\sqrt{2x+1}}{x\left(x-1\right)}=\dfrac{4-\sqrt{3}}{0}=+\infty\Rightarrow x=1\) là TCĐ
Đồ thị hàm số có 2 tiệm cận

1 is washing
2 aren't watching
3 am having
4 is studying
5 are staying
6 are rising
7 are wautubg
8 are becoming



câu 14 : chọn đáp án \(B\) vì \(\left|\overrightarrow{b}\right|=\sqrt{\left(1\right)^2+\left(-1\right)^2}=\sqrt{2}\ne0\)
câu 18 : ta có tọa độ trọng tâm \(G\) của tam giác \(ABC\)
là \(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_G=\dfrac{2+3-7}{3}\\y_G=\dfrac{1-1+3}{3}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_G=\dfrac{-2}{3}\\y_G=1\end{matrix}\right.\)
vậy tọa độ trọng tâm \(G\) là \(G\left(\dfrac{-2}{3};1\right)\) \(\Rightarrow\) chọn đáp án \(B\)
câu 19 : đặt tọa độ của điểm \(D\) là \(D\left(x_D;y_D\right)\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-7\right)\\\overrightarrow{DC}=\left(4-x_D;3-y_D\right)\end{matrix}\right.\)
ta có \(ABCD\) là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\Leftrightarrow\left\{{}\begin{matrix}1=4-x_D\\-7=3-y_D\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_D=3\\y_D=10\end{matrix}\right.\)
vậy tọa độ điểm \(D\) là \(D\left(3;10\right)\) \(\Rightarrow\) chọn đáp án \(A\)