/3x-1/>=5 tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng đẳng thức: \(\frac{a}{b}=\frac{c}{d}=ad=bc\) để tìm x

Ta có : A = x3 - 3x2 + 3x + 5
= (x3 - 3x2 + 3x - 1) + 6
A = (x - 1)3 + 6
Vì x\(\ge2\) nên : ( x - 1)3 \(\ge1\)
Suy ra : A = (x - 1)3 + 6 \(\ge1+6\)
Vậy A = \(\ge7\)

3(2x+3)(3x-5)<0
\(\Rightarrow\left(3x+3\right)\left(3x-5\right)< 0\)
Mà \(3x+3>3x-5\)
\(\Rightarrow\hept{\begin{cases}3x+3>0\\3x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x>-3\\3x< 5\end{cases}}\)
\(\Rightarrow-1< x< \frac{5}{3}\)
\(2x^2-4x=2x\left(x-2\right)>0\)
\(\Rightarrow x\left(x-2\right)>0\)
\(\Rightarrow\orbr{\begin{cases}x< 0;x-2< 0\\x>0;x-2>0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< 0\\x>2\end{cases}}\)

bv) |x - 5| > 7
=> x - 5 > 7 => x > 12
hoặc x - 5 < -7 => x < -2
Vậy x > 12 hoặc x < -2
a) 3x + 7 chia hết cho x - 1
3x - 3 + 10 chia hết cho x - 1
10 chia hết cho x - 1
x - 1thuộc U(10) = {-10 ; -5 ; -2 ; -1 ; 1 ; 2 ; 5 ; 10}
x thuộc {-9 ;-4 ; -1; 0 ; 2 ; 3 ; 6 ; 11}

a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)
\(S=\left\{1;\frac{1}{3}\right\}\)
b)\(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(S=\left\{2;-3\right\}\)


\(\left|3x-1\right|\ge5\)
=>3x-1>=5 hoặc 3x-1<=-5
=>3x>=6 hoặc 3x<=-4
=>x>=2 hoặc x<=-4/3