K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

\(D=-3-\left|2x+4\right|\)

\(\left|2x+4\right|\ge0\forall x\)

\(D=-3-\left|2x+4\right|\le3\)

Dấu "=" xảy ra khi:

\(\left|2x+4\right|=0\Rightarrow x=-2\)

\(A=3\left|1-2x\right|-5\)

\(\left|1-2x\right|\ge0\Rightarrow3\left|1-2x\right|\ge0\forall x\)

\(A=3\left|1-2x\right|-5\ge-5\)

Dấu "=" xảy ra khi:

\(3\left|1-2x\right|=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

27 tháng 8 2017

Hồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnHồng Phúc NguyễnNguyễn Nhã HiếuHồng Phúc NguyễnHồng Phúc Nguyễn

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

a.

Tìm min:

$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$

Vậy $y_{\min}=2$

----------------

Mặt khác: 

$y=4\sin x(\sin x+1)-8(\sin x+1)+11$

$=(\sin x+1)(4\sin x-8)+11$

$=4(\sin x+1)(\sin x-2)+11$

Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$

$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$

$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$

Vậy $y_{\max}=11$

 

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

b.

$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$

$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$

Vậy $y_{\max}=4$.

---------------------------

Mặt khác:

$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$

$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$

$=(1+\sin x)(3-\sin x)$

Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$

$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$

Vậy $y_{\min}=0$

a: -1<=cos2x<=1

=>3>=-3cos2x>=-3

=>7>=-3cos2x+4>=1

=>7>=y>=1

\(y_{min}=1\) khi \(cos2x=1\)

=>2x=k2pi

=>x=kpi

\(y_{max}=-1\) khi cos2x=-1

=>2x=pi+k2pi

=>x=pi/2+kpi

b: \(0< =sin^2x< =1\)

=>\(3< =sin^2x+3< =4\)

=>3<=y<=4

y min=3 khi sin^2x=0

=>sinx=0

=>x=kpi

y max=4 khi sin^2x=1

=>cos^2x=0

=>x=pi/2+kpi

c: \(y=sin2x+3\)

-1<=sin2x<=1

=>-1+3<=sin2x+3<=1+3

=>2<=y<=4

\(y_{min}=2\) khi sin 2x=-1

=>2x=-pi/2+k2pi

=>x=-pi/4+kpi

y max=4 khi sin2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi

NV
9 tháng 7 2021

a.

\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)

\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))

\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)

b.

\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)

\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)

\(\Leftrightarrow11y^2+2y-9\le0\)

\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)

NV
9 tháng 7 2021

c.

Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)

\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)

\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)

Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:

\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)

\(\Leftrightarrow y^2+8y-36\le0\)

\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)

a: Ta có: \(3\left|2x+5\right|\ge0\forall x\)

\(\Leftrightarrow3\left|2x+5\right|-7\ge-7\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{5}{2}\)

c: ta có: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x-3\right)^2-14\ge-14\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

31 tháng 8 2021

b,c,d đâu bạn

 

4 tháng 8 2017

Dễ thấy D > 0

D có GTLN \(\Leftrightarrow\)( 2x - 3 )2 + 5 có GTNN \(\Leftrightarrow\)( 2x - 3 )2 có GTNN \(\Leftrightarrow\)2x = 3 \(\Leftrightarrow\)x = 1,5

GTLN của D = \(\frac{4}{5}\)khi x = 1,5

4 tháng 8 2017

756468