Chinh phục Đấu trường Tri thức OLM hoàn toàn mới, xem ngay!
🎯Bài kiểm tra ĐGNL đầu hè miễn phí cho học sinh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A=\(x^2+xy-x+xy^2+y^3-y^2+xy\)
Biết x+y=1. Tìm GTLN của A
\(\text{Ta có : }x+y=1\Rightarrow\left\{{}\begin{matrix}1-y=x\\y-1=-x\end{matrix}\right.\left(1\right)\\ \)
\(A=x^2+xy-x+xy^2+y^3-y^2+xy\)
\(A=\left(x^2+xy\right)-\left(x-xy\right)+\left(y^3-y^2\right)+xy^2\)
\(A=x\left(x+y\right)-x\left(1-y\right)+y^2\left(y-1\right)+xy^2\)
Thay \(\left(1\right)\) vào suy ra :
\(A=x\left(1\right)-x\left(x\right)+y^2\left(-x\right)+xy^2\)
\(A=x-x^2+\left(-xy^2\right)+xy^2\)
\(A=x-x^2-xy^2+xy^2\)
\(A=x-x^2-\left(xy^2-xy^2\right)\)
\(A=x-x^2\)
Mà \(x^2\ge0\)
\(\Rightarrow A=x-x^2\le x\)
Dấu \("="\) xảy ra khi : \(x^2=0\Rightarrow x=0\)
\(\Rightarrow A=x-x^2\le0\)
Vậy \(A_{\left(max\right)}=0\) khi \(x=0\)
1,cho x+y+4=0
tìm GTLN của A= 2(x3+y3)+3(x2+y2)+10xy
2,cho x4+y4-7=xy(3-2xy)
tìm GTNN của :M=xy
Cho 2 số thực x, y thỏa mãn \(x^2+y^2+xy=3\). Tìm GTLN và GTNN của \(S=x^4+xy+y^4\)
cho x+y=2.cmr xy<1(tìm gtln của A<xy)
tìm GTLN GLNN của:
P = x- 2Y biết x^2 + xy + y^2 =3
y= (x^2 +2x+2)/(x^2 + 3)
P= x^2 + xy +2y^2 biết x^2 + y^2 = 2
Tìm GTLN của:
\(A=\frac{1}{x^3}+\frac{1}{y^3}\text{ biết }x,y\ne0\text{ và }\left(x+y+1\right)xy=x^2+y^2\)
cho x2 + y2 = 2 với x , y > 0
a) tìm GTNN của A = \(\frac{1}{x}+\frac{1}{y}\)
b) tìm GTLN của B = ( x + y ) nhân xy
c) tìm GTLN của C = xy2
cho x^2-xy+y^2 =<1 tìm gtnn,gtln của 2x^2+xy-y^2
\(\text{Ta có : }x+y=1\Rightarrow\left\{{}\begin{matrix}1-y=x\\y-1=-x\end{matrix}\right.\left(1\right)\\ \)
\(A=x^2+xy-x+xy^2+y^3-y^2+xy\)
\(A=\left(x^2+xy\right)-\left(x-xy\right)+\left(y^3-y^2\right)+xy^2\)
\(A=x\left(x+y\right)-x\left(1-y\right)+y^2\left(y-1\right)+xy^2\)
Thay \(\left(1\right)\) vào suy ra :
\(A=x\left(1\right)-x\left(x\right)+y^2\left(-x\right)+xy^2\)
\(A=x-x^2+\left(-xy^2\right)+xy^2\)
\(A=x-x^2-xy^2+xy^2\)
\(A=x-x^2-\left(xy^2-xy^2\right)\)
\(A=x-x^2\)
Mà \(x^2\ge0\)
\(\Rightarrow A=x-x^2\le x\)
Dấu \("="\) xảy ra khi : \(x^2=0\Rightarrow x=0\)
\(\Rightarrow A=x-x^2\le0\)
Vậy \(A_{\left(max\right)}=0\) khi \(x=0\)