K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 7 2017

Lời giải:

Bạn nên thêm điều kiện \(n\in\mathbb{N}\)

Phản chứng, giả sử tồn tại \(p\in \mathbb{P}\) sao cho:

\(\left\{\begin{matrix} a=2^n+3^n\vdots p\\ b=2^{n+1}+3^{n+1}\vdots p\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2a=2^{n+1}+2.3^n\vdots p\\ b=2^{n+1}+3^{n+1}\vdots p\end{matrix}\right.\Rightarrow 3^{n+1}-2.3^n\vdots p\)

\(\Leftrightarrow 3^n\vdots p\). Vì \(p\in\mathbb{P}\Rightarrow p=3\)

Thay vào, \(2^{n+1}+3^{n+1}\vdots 3\) . Với \(n+1\in \mathbb{N}^*\) thì \(3^{n+1}\) luôn chia hết cho $3$, do đó \(2^{n+1}\vdots 3\) (vô lý)

Vậy không tồn tại ước chung nào giữa $a,b$. Do đó $a,b$ nguyên tố cùng nhau.