Livestream ôn tập cuối kỳ II "Vượt vũ môn, ôn điểm 10" miễn phí, xem ngay!
Ngày cuối nhận ưu đãi mua 1 tặng 2 (25/4/2025). Xem ngay!
Tập huấn HOÀN TOÀN MIỄN PHÍ cho giáo viên, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(a=2^n+3^n\)
\(b=2^{n+1}+3^{n+1}\)
\(c=2^{n+2}+3^{n+2}\)
CM: a;b nguyên tố cùng nhau
Lời giải:
Bạn nên thêm điều kiện \(n\in\mathbb{N}\)
Phản chứng, giả sử tồn tại \(p\in \mathbb{P}\) sao cho:
\(\left\{\begin{matrix} a=2^n+3^n\vdots p\\ b=2^{n+1}+3^{n+1}\vdots p\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2a=2^{n+1}+2.3^n\vdots p\\ b=2^{n+1}+3^{n+1}\vdots p\end{matrix}\right.\Rightarrow 3^{n+1}-2.3^n\vdots p\)
\(\Leftrightarrow 3^n\vdots p\). Vì \(p\in\mathbb{P}\Rightarrow p=3\)
Thay vào, \(2^{n+1}+3^{n+1}\vdots 3\) . Với \(n+1\in \mathbb{N}^*\) thì \(3^{n+1}\) luôn chia hết cho $3$, do đó \(2^{n+1}\vdots 3\) (vô lý)
Vậy không tồn tại ước chung nào giữa $a,b$. Do đó $a,b$ nguyên tố cùng nhau.
Lời giải:
Bạn nên thêm điều kiện \(n\in\mathbb{N}\)
Phản chứng, giả sử tồn tại \(p\in \mathbb{P}\) sao cho:
\(\left\{\begin{matrix} a=2^n+3^n\vdots p\\ b=2^{n+1}+3^{n+1}\vdots p\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2a=2^{n+1}+2.3^n\vdots p\\ b=2^{n+1}+3^{n+1}\vdots p\end{matrix}\right.\Rightarrow 3^{n+1}-2.3^n\vdots p\)
\(\Leftrightarrow 3^n\vdots p\). Vì \(p\in\mathbb{P}\Rightarrow p=3\)
Thay vào, \(2^{n+1}+3^{n+1}\vdots 3\) . Với \(n+1\in \mathbb{N}^*\) thì \(3^{n+1}\) luôn chia hết cho $3$, do đó \(2^{n+1}\vdots 3\) (vô lý)
Vậy không tồn tại ước chung nào giữa $a,b$. Do đó $a,b$ nguyên tố cùng nhau.