Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
* Vẽ tam giác đều:
Chia đường tròn thành 6 cung bằng nhau như phần a).
Nối các điểm như hình vẽ ta được tam giác đều nội tiếp đường tròn.
* Tính cạnh tam giác :
Gọi cạnh ΔABC đều là a.
Gọi H là trung điểm BC
⇒ HB = a/2
Tam giác ABC là tam giác đều có O là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác
Mà OA = R ⇒ a = R√3.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
* Vẽ lục giác đều nội tiếp (O; R) :
+ Lấy điểm A trên (O ; R).
+ Vẽ cung tròn (A; R) cắt (O; R) tại B và F => AB = AF = R
+ Vẽ cung tròn (B; R) cắt (O; R) tại C ( khác A) => BC = R
+ Vẽ cung tròn (C; R) cắt (O; R) tại D ( khác B) => CD = R
+ Vẽ cung tròn (D; R) cắt (O; R) tại E ( khác C)=> DE = R
ABCDEF là lục giác đều cần vẽ.
* Tính cạnh: AB = BC = CD = DE = EF = FA = R.
b)
* Vẽ hình vuông :
+ Vẽ đường kính AC của đường tròn tâm O.
+ Vẽ đường kính BD ⊥ AC
Tứ giác ABCD có hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên là hình vuông.
Nối A với B ; B với C ; C với D với A ta được hình vuông ABCD nội tiếp đường tròn (O).
* Tính cạnh :
ΔAOB vuông tại O
c)
* Vẽ tam giác đều:
Chia đường tròn thành 6 cung bằng nhau như phần a).
Nối các điểm như hình vẽ ta được tam giác đều nội tiếp đường tròn.
* Tính cạnh tam giác :
Gọi cạnh ΔABC đều là a.
Gọi H là trung điểm BC
⇒ HB = a/2
Tam giác ABC là tam giác đều có O là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác
Mà OA = R ⇒ a = R√3.
![](https://rs.olm.vn/images/avt/0.png?1311)
* Vẽ lục giác đều nội tiếp (O; R) :
+ Lấy điểm A trên (O ; R).
+ Vẽ cung tròn (A; R) cắt (O; R) tại B và F => AB = AF = R
+ Vẽ cung tròn (B; R) cắt (O; R) tại C ( khác A) => BC = R
+ Vẽ cung tròn (C; R) cắt (O; R) tại D ( khác B) => CD = R
+ Vẽ cung tròn (D; R) cắt (O; R) tại E ( khác C)=> DE = R
ABCDEF là lục giác đều cần vẽ.
* Tính cạnh: AB = BC = CD = DE = EF = FA = R.
![](https://rs.olm.vn/images/avt/0.png?1311)
* Vẽ hình vuông :
+ Vẽ đường kính AC của đường tròn tâm O.
+ Vẽ đường kính BD ⊥ AC
Tứ giác ABCD có hai đường chéo bằng nhau, vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên là hình vuông.
Nối A với B ; B với C ; C với D với A ta được hình vuông ABCD nội tiếp đường tròn (O).
* Tính cạnh :
ΔAOB vuông tại O
![](https://rs.olm.vn/images/avt/0.png?1311)
*cách vẽ:
- vẽ đường tròn (O,2cm)
- Từ một điểm A trên đường tròn (O;2cm) đặt liên tiếp các cung bằng nhau có dây căng cung bằng 2cm
-Nối AB, BC, CD, DE, EG, GA ta được lục giác đều ABCDEG nội tiếp trong đường tròn (O;2cm)
-kẻ đường kính vuông góc với AB và DE cắt đường tròn lần lượt tại I và L. Ta có:
-kẻ đường kính vuông góc với BC và EG cắt đường tròn lần lượt tại J và M.Ta có:
-kẻ đường kính vuông góc với CD và AG cắt đường tròn lần lượt tại N và K.Ta có:
-Nối AI , IB, BJ, JC, CK, KD, DL, LE, EM, MG, GN, NA đa giác AIBJCKDLEMGN là đa giác đều mười hai cạnh nội tiếp trong đường tròn (O;2cm)
Hình a.
Gọi ai là cạnh của đa giác đều i cạnh.
a) a6= R (vì OA1A2 là tam giác đều)
Cách vẽ: vẽ đường tròn (O;R). Trên đường tròn ta đặt liên tiếp các cung
,
,...,
mà căng cung có độ dài bằng R. Nối A1 với A2, A2 với A3,…,A6 với A1 ta được hình lục giác đều A1A2A3A4A5A6 nội tiếp đường tròn
b) Hình b
Trong tam giác vuông OA1A2: a2 = R2 + R2 = 2R2 => a4 = R√2
Cách vẽ như ở bài tập 61.
c) Hình c
A1H = R +
= ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cfrac%7B3R%7D%7B2%7D)
A3H =
A1A3 = a
Trong tam giác vuông A1HA3 ta có: A1H2 = A1A32 – A3H2.
Từ đó
= a2 -
.
=> a2 = 3R2 => a = R√3
Cách vẽ như câu a) hình a.
Nối các điểm chia cách nhau một điểm thì ta được tam giác đều chẳng hạn tam giác A1A3A5 như trên hình c
Hình a.
Gọi ai là cạnh của đa giác đều i cạnh.
a) a6= R (vì OA1A2 là tam giác đều)
Cách vẽ: vẽ đường tròn (O;R). Trên đường tròn ta đặt liên tiếp các cung
,
,...,
mà căng cung có độ dài bằng R. Nối A1 với A2, A2 với A3,…,A6 với A1 ta được hình lục giác đều A1A2A3A4A5A6 nội tiếp đường tròn
b) Hình b
Trong tam giác vuông OA1A2: a2 = R2 + R2 = 2R2 => a4 = R√2
Cách vẽ như ở bài tập 61.
c) Hình c
A1H = R +
= ![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cfrac%7B3R%7D%7B2%7D)
A3H =
A1A3 = a
Trong tam giác vuông A1HA3 ta có: A1H2 = A1A32 – A3H2.
Từ đó
= a2 -
.
=> a2 = 3R2 => a = R√3
Cách vẽ như câu a) hình a.
Nối các điểm chia cách nhau một điểm thì ta được tam giác đều chẳng hạn tam giác A1A3A5 như trên hình c