Xác định a, b để đồ thị của hàm số \(y=ax+b\) đi qua các điểm :
a. \(A\left(0;3\right)\) và \(B\left(\dfrac{3}{5};0\right)\)
b. \(A\left(1;2\right)\) và \(B\left(2:1\right)\)
c. \(A\left(15;-3\right)\) và \(B\left(21;-3\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(0;3) thuộc đồ thị hàm số y = ax + b ⇒ 3 = a.0 + b ⇒ b = 3.
B (3/5; 0) thuộc đồ thị hàm số y = ax + b ⇒ 0 = a.3/5 + 3 ⇒ a = –5.
Vậy a = –5; b = 3.
Vì đồ thị đi qua A(2/3; -2) nên ta có phương trình 2a/3 + b = -2
Tương tự, dựa vào tọa độ của B(0 ;1) ta có 0 + b = 1.
Vậy, ta có hệ phương trình.
Hàm số y = ax + b đi qua điểm M(1; 7).
\(\Rightarrow7=a+b.\left(1\right)\)
Hàm số y = ax + b đi qua điểm N(0; 3).
\(\Rightarrow3=b.\left(2\right)\)
Thay (2) vào (1), ta có:
\(7=a+3.\Leftrightarrow a=4.\)
Vậy các hệ số a và b là 4 và 3.
A(1; 2) thuộc đồ thị hàm số y = ax + b ⇒ 2 = a.1 + b ⇒ b = 2 – a (1)
B (2; 1) thuộc đồ thị hàm số y = ax + b ⇒ 1 = 2.a + b (2)
Thay (1) vào (2) ta được: 2a + 2 – a = 1 ⇒ a = –1 ⇒ b = 2 – a = 3.
Vậy a = –1; b = 3.
A(15; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 15.a + b ⇒ b = –3 – 15.a (1)
B (21; –3) thuộc đồ thị hàm số y = ax + b ⇒ –3 = 21.a + b ⇒ b = –3 – 21.a (2)
Từ (1) và (2) suy ra –3 – 15.a = –3 – 21.a ⇒ a = 0 ⇒ b = –3.
Vậy a = 0; b = –3.
Đáp án B
Do đồ thị hàm số đã cho đi qua hai điểm A và B nên ta có:
Đồ thị hàm số y = ax + b đi qua M(1;7) và N(0;3) nên tọa độ của M, N thỏa mãn phương trình .
Ta có a + b = 7 b = 3 ⇒ a = 4 b = 3 .
Vậy đáp án là B.
a) Vì đths y=ax đi qua A(2;3)
\(\Rightarrow\)Thay x=2; y=3
Ta có:
y=ax
\(\Rightarrow\)2a=3
\(\Rightarrow\)a=3/2
\(\Rightarrow\)y=3/2x
b) Vì B \(\in\)đths y=3/2x
\(\Rightarrow\)Thay y=-2
\(\Rightarrow\)3/2x=-2
\(\Rightarrow\)-4/3
Vậy hoành độ của B\(=\)-4/3
a;
ta có A[2;3] thay vào công thức y=ax
=>3=a.2
=>a=1,5
b;
B[1.5;-2]
Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)
Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.
Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.
Vậy a = 0 và b = 2.
a) Thay x, y trong phương trình y = ax + b bằng tọa độ của A và của B ta được hệ phương trình:![This is the rendered form of the equation. You can not edit this directly. Right click will give you the option to save the image, and in most browsers you can drag the image onto your desktop or another program.](http://latex.codecogs.com/gif.latex?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%203%3Da.0%20+%20b%5C%5C%200%3Da.%5Cfrac%7B3%7D%7B5%7D+b%20%5Cend%7Bmatrix%7D%5Cright.%5CLeftrightarrow%20%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20a%3D-5%5C%5C%20b%3D3%20%5Cend%7Bmatrix%7D%5Cright.)
Vậy phương trình của đường thẳng đi qua A(0; 3) và
là: y = - 5x + 3.
b) Thay \(x,y\) trong phương trình \(y=ax+b\) bằng tọa độ A và B ta được hệ phương trình: \(\left\{{}\begin{matrix}1.a+b=2\\2.a+b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\).
Vậy phương trình đường thẳng cần tìm là: \(y=-x+3\).
c) Thay \(x,y\) trong phương trình \(y=ax+b\) bằng tọa độ A và B ta được hệ phương trình: \(\left\{{}\begin{matrix}15a+b=-3\\21a+b=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\).
Vậy phương trình đường thẳng cần tìm là: \(y=-3\).