Cho A=1+3+3^2+3^3+.....+3^20; B=321:2. Tính B-A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(A=3+3^2+3^3+...+3^{20}\)
\(\Leftrightarrow3\cdot A=3^2+3^3+3^4+...+3^{21}\)
\(\Leftrightarrow2\cdot A=3^{21}-3\)
hay \(A=\dfrac{3^{21}-3}{2}\)

1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1

Lời giải:
Ta thấy
$3^2\vdots 9$
$3^3=3^2.3\vdots 9$
......
$3^{20}=3^2.3^{18}\vdots 9$
$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$
$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9
$\Rightarrow A$ không thể là số chính phương.

\(3B=5+\left(\dfrac{5}{3}\right)+\left(\dfrac{5}{3}\right)^2+...+\left(\dfrac{5}{3}\right)^{20}\)
=>\(2B=5-\left(\dfrac{5}{3}\right)^{21}=\dfrac{5\cdot3^{21}-5}{3^{21}}\)
=>\(B=\dfrac{5\cdot3^{21}-5}{3^{21}\cdot2}\)

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12
Mà đoạn 2A sai nhé bạn, sửa lại:
2A = 3101−13101−1 2A=-10001
A=-10001/2
A=-5000,5
Vậy A=-5000,5

Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2

A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 +34+ .... + 3101
3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100
2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)
2A = 3101 - 1
A = \(\dfrac{3^{101}-1}{2}\)
Xin lỗi. Mình còn thiếu!!!
\(\Rightarrow2A=3^{21}-1\Rightarrow A=\frac{3^{21}-1}{2}\)
\(\Rightarrow B-A=\frac{3^{21}}{2}-\frac{3^{21}-1}{2}=\frac{1}{2}\)
minh ko biết xin lỗi bạn nha
minh ko biết xin lỗi bạn nha
minh ko biết xin lỗi bạn nha
minh ko biết xin lỗi bạn nha
minh ko biết xin lỗi bạn nha