Từ tỉ lệ thức a/b=c/d ta suy ra dc: a^2/b^2=(a+c)^2/(b+d)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ban coi trong sach giao khoa ti le thuc se co mot phan chung minh cho ban thay bang cach dat a/b=c/d=k nha
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2};\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=\frac{c^2}{d^2}\\ \Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`Answer:`
a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)
\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)
\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)
Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$. Khi đó:
$\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}(1)$
Và:
$\frac{(a-b)^2}{(c-d)^2}=\frac{(bk-b)^2}{(dk-d)^2}=\frac{b^2(k-1)^2}{d^2(k-1)^2}=\frac{b^2}{d^2}(2)$
Từ $(1); (2)$ ta có đpcm.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\)\(\frac{a}{b}=\frac{a^2}{b^2}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)(đpcm)