K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

Ta có: 6( x + 7y ) = 6x + 42y 

Vì 6x + 11y - ( 6x + 42y ) = 6x - 6x + 11y - 42y = -31y mà -31 Chia hết cho 31 nên 6x +11Y - 6( x + 7y) chia hết cho 31 nên 6x + 11Y - ( x + 7y) chia hết cho 31. Vậy mà 6x + 11y chia hết cho 31 nên để 6x + 11y - (x + 7y) chia hết cho 31 thì x + 7y chia hết cho 31(đpcm)

a: 

6x+11y chia hết cho 31

=>6x+11y+31y chia hết cho 31

=>6x+42y chia hết cho 31

=>x+7y chia hết cho 31

b: x+7y chia hết cho 31

=>6x+42y chia hét cho 31

=>6x+11y chia hết cho 31

7 tháng 3 2020

có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y

6x + 11y chia hết cho 31; 31y chia hết cho 31

=> 6(x + 7y) chia hết cho 31

=> x + 7y chia hết cho 31  

làm ngược lại 

7 tháng 3 2020

Gọi  A =  6x + 7y − 6x + 11y
⇒A = 6x + 42y − 6x − 11y

=> A = y(42 − 11)= 31y
Vì 31y chia hết cho 31 và 6x + 11y chia hết cho 31
Nên 6 (x+7y) chia hết cho 31.
Do ƯCLN(6;31) = 1 nên x+7y chia hết cho 31
Vậy : Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31

a: 

6x+11y chia hết cho 31

=>6x+11y+31y chia hết cho 31

=>6x+42y chia hết cho 31

=>x+7y chia hết cho 31

b: x+7y chia hết cho 31

=>6x+42y chia hét cho 31

=>6x+11y chia hết cho 31

3a+5b⋮31

=>7(3a+5b)⋮31

=>21a+35b⋮31

=>21a+66b-31b⋮31

=>21a+66b⋮31

=>3(7a+22b)⋮31

=>7a+22b⋮31

Giả sử \(\)3a + 5b chia hết cho 31
ta có

\(3a+5b=31k\left(\right.k\in\mathbb{Z}\left.\right)\)

Ta có

\(7a+22b=\left(\right.3a+5b\left.\right)\cdot23\)

\(\left(\right.3a+5b\left.\right)\cdot23=69a+115b\)

\(69 a + 115 b\)\(7 a + 22 b\) chỉ khác nhau một bội của 31 (vì \(69 - 7 = 62 = 31 \cdot 2\), \(115 - 22 = 93 = 31 \cdot 3\))
⇒ Nên chúng có cùng tính chia hết cho 31

Do \(3 a + 5 b\) chia hết cho 31, suy ra \(\) 7a + 22b cũng chia hết cho 31

vậy

7a + 22b chia hết cho 31

22 tháng 7 2015

6x+11y chia hết cho 31

=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)

=> 6x + 42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Vì 6 và 31 nguyên tố cũng nhau nên x+7y cũng phải chia hết cho 31 (ĐPCM)

26 tháng 2 2020

có : 

6(x + 7y) = 6x + 42y

= 6x + 11y + 31y

6x + 11y chia hết cho 31

31y chia hết cho 31

=> 6(x + 7y) chia hết cho 31 vì 6 không chia hết cho 31

=> x + 7y chia hết cho 31

26 tháng 2 2020

Ta có : 6 . ( x + 7y ) = 6x + 42y = 6x + 11y + 31y

=> 6x + 11y chia hết cho 31

31y chia hết cho 31 => 6 . ( x + 7y ) cũng chia hết cho 31 vì 6 không chia hết cho 31.

=> x + 7y chia hết cho 31. 

6(6x+11y)-5(x+7y)

=36x+66y-5x-35y=31x+31y =31(x+y) chia hết 31

Nếu 6(6x+11y) chia hết cho 31 thì 6x+11y chia hết 31 

mà (6;5)=1 => x+7y chia hết cho 31

Nếu 5(x+7y) thì x+7y chia hết cho 31

mà (6;5)=1  => 6x +11y chia hết cho 31

Vậy........

Học tốt

19 tháng 2 2020

Ta có : 6x + 11y \(⋮\)31

=> 7(6x + 11y) \(⋮\)31

=> 42x + 77y \(⋮\)31

=> 31x + (11x + 77y) \(⋮\)31

=> 31x + 11(x + 7y) \(⋮\)31

Vì \(\hept{\begin{cases}31x+11\left(x+7y\right)⋮31\\31x⋮31\end{cases}}\)=> 31x + 11(x + 7y) - 31x \(⋮\)31 

=> 11(x + 7y) \(⋮\)31

=> x + 7y \(⋮\)31 (đpcm)

14 tháng 2 2016

bài toan nay kho

14 tháng 2 2016

Ta có : 31.(x+2y) = 31x+62y = 5.(6x+11y) + (x+7y)

Do 6x+11y chia hết 31 , suy ra 5.(6x+11y) chia hết 31

suy ra x +7y chia hết 31 (đpcm)

    nha