\(\frac{x^2}{9}+\frac{1}{x^2}=\frac{5}{3}\cdot\left(\frac{x}{3}-\frac{1}{x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
\(\left(\right. \frac{13 \frac{2}{9} - 15 \frac{2}{3}}{18 \frac{3}{7} - 17 \frac{1}{4}} \cdot \frac{30^{2} - 5^{4}}{25 - 12 \cdot 5^{2}} \left.\right) \cdot x = \frac{\frac{2}{11} + \frac{3}{13} + \frac{4}{15} + \frac{5}{17}}{4 \frac{1}{11} + \frac{5}{13} + \frac{9}{15} + \frac{13}{17}}\)
Bước 1: Đổi hỗn số về phân số
- \(13 \frac{2}{9} = \frac{119}{9}\),
- \(15 \frac{2}{3} = \frac{47}{3}\),
- \(18 \frac{3}{7} = \frac{129}{7}\),
- \(17 \frac{1}{4} = \frac{69}{4}\)
Bước 2: Tính toán từng phần
Ta có:
\(\frac{119}{9} - \frac{47}{3} = \frac{119 - 141}{9} = \frac{- 22}{9}\) \(\frac{129}{7} - \frac{69}{4} = \frac{516 - 483}{28} = \frac{33}{28}\) \(30^{2} - 5^{4} = 900 - 625 = 275\) \(25 - 12 \cdot 25 = 25 - 300 = - 275\)
Khi đó:
\(\left(\right. \frac{- 22}{9} \div \frac{33}{28} \cdot \frac{275}{- 275} \left.\right) = \left(\right. \frac{- 22}{9} \cdot \frac{28}{33} \cdot \left(\right. - 1 \left.\right) \left.\right) = \frac{616}{297}\)
Bước 3: Tính vế phải
Tử số:
\(\frac{2}{11} + \frac{3}{13} + \frac{4}{15} + \frac{5}{17} = \frac{35494}{36465}\)
Mẫu số:
\(4 \frac{1}{11} + \frac{5}{13} + \frac{9}{15} + \frac{13}{17} = \frac{149645}{36465}\)
→ Vế phải:
\(\frac{35494}{36465} \div \frac{149645}{36465} = \frac{35494}{149645}\)
Bước 4: Giải phương trình
\(\frac{616}{297} \cdot x = \frac{35494}{149645} \Rightarrow x = \frac{35494}{149645} \cdot \frac{297}{616} = \frac{813}{7118}\)
Vậy:
\(\boxed{x = \frac{813}{7118}}\)
hỉu không =]]]

b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)

( 1/7 . x - 2/7 ) . ( -1.5 . x + 3/5 ) . ( 1/ 3 . x + 4/3) + 0
<=> +) 1/7 . x - 2/7 = 0 +) (- 1 / 5) . x +3/5 = 0 +) 1/ 3 . x + 4/ 3 = 0
x = 2 x = 3 x = 4
Vậy x = 2 : x = 3 ; x=4

a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........

\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
\(\frac{x^2}{9}+\frac{1}{x^2}=\frac{5}{3}\left(\frac{x}{3}-\frac{1}{x}\right)\)
đặt \(\left(\frac{x}{3}-\frac{1}{x}\right)=t\Rightarrow t^2=\left(\frac{x^2}{9}-\frac{2}{3}+\frac{1}{x^2}\right)\Rightarrow\frac{x^2}{9}+\frac{1}{x^2}=t^2+\frac{2}{3}\)
\(\Leftrightarrow t^2-\frac{5}{3}t+\frac{2}{3}=0\Leftrightarrow t^2-2.\frac{5}{6}t+\left(\frac{5}{6}\right)^2=\frac{25}{36}-\frac{24}{36}=\frac{1}{36}=\left(\frac{1}{6}\right)^2\)
\(\Rightarrow\left[\begin{matrix}t-\frac{5}{6}=\frac{1}{6}\\t-\frac{5}{6}=-\frac{1}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}t=1\\t=\frac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\frac{x}{3}-\frac{1}{x}=1\\\frac{x}{3}-\frac{1}{x}=\frac{2}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\ne0\\x^2-x-3=0\\x^2-2x-3=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x\ne0\\\left[\begin{matrix}x=\frac{1-\sqrt{13}}{2}\\x=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\\\left[\begin{matrix}x=-1\\x=3\end{matrix}\right.\end{matrix}\right.\)
Kết luận: \(\left[\begin{matrix}x=\frac{1-\sqrt{13}}{2}\\x=\frac{1+\sqrt{13}}{2}\\x=-1\\x=3\end{matrix}\right.\)