K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔMPK vuông tại K, ta được:

\(MP^2=MK^2+KP^2\)

\(\Leftrightarrow MP^2=3^2+\left(2\sqrt{3}\right)^2=21\)

hay \(MP=\sqrt{21}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:

\(MK^2=PK\cdot NK\)

\(\Leftrightarrow NK=\dfrac{12}{3}=4\left(cm\right)\)

Xét ΔMPK vuông tại K có

\(\cos\widehat{MPN}=\dfrac{PK}{MP}=\dfrac{3}{\sqrt{21}}=\dfrac{\sqrt{21}}{7}\)

Xét ΔMKN vuông tại K có 

\(\tan\widehat{MNP}=\dfrac{MK}{KN}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)

Xét ΔMNP vuông tại M có MK là đường cao

nên \(PM^2=PK\cdot PN\)

=>x(x+6)=16

=>x=2

19 tháng 5 2022

undefined

Xét `\triangle MNP` vuông tại `M` có: `MK` là đường cao

      `=>MP^2=PK.PN` (Ht giữa cạnh và đường cao)

     `=>MP^2=PK.(PK+KN)`

     `=>4^2=x(x+6)`

   `<=>x^2+6x-16=0`

   `<=>(x+8)(x-2)=0`

   `<=>` $\left[\begin{matrix} x=-8\text{ (ko t/m)}\\ x=2\text{ (t/m)}\end{matrix}\right.$

Vậy `x=2`

a: ΔMDN vuông tại D

=>\(MD^2+DN^2=MN^2\)

=>\(MN^2=6^2+8^2=36+64=100=10^2\)

=>MN=10(cm)

Xét ΔDNM vuông tại D có \(\sin DMN=\frac{DN}{MN}=\frac{6}{10}=\frac35\)

nên \(\hat{DMN}\) ≃36 độ 52p

b: Xét ΔMDN vuông tại D có DA là đường cao

nên \(MA\cdot MN=MD^2\left(1\right)\)

Xét ΔMDP vuông tại D có DB là đường cao

nên \(MB\cdot MP=MD^2\left(2\right)\)

Từ (1),(2) suy ra \(MA\cdot MN=MB\cdot MP\)

c: Xét ΔMIN vuông tại I và ΔMKP vuông tại K có

\(\hat{IMN}\) chung

Do đó: ΔMIN~ΔMKP

=>\(\frac{MI}{MK}=\frac{MN}{MP}\)

=>\(\frac{MI}{MN}=\frac{MK}{MP}\)

Xét ΔMIK và ΔMNP có

\(\frac{MI}{MN}=\frac{MK}{MP}\)

góc IMK chung

Do đó: ΔMIK~ΔMNP

=>\(\hat{MIK}=\hat{MNP}\left(3\right)\)

ta có: \(MA\cdot MN=MB\cdot MP\)

=>\(\frac{MA}{MP}=\frac{MB}{MN}\)

Xét ΔMAB và ΔMPN có

\(\frac{MA}{MP}=\frac{MB}{MN}\)

góc AMB chung

Do đó: ΔMAB~ΔMPN

=>\(\hat{MBA}=\hat{MNP}\left(4\right)\)

Từ (3),(4) suy ra \(\hat{MBA}=\hat{MIK}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên BA//KI

9 tháng 4 2021

undefined

8 tháng 11 2023

Áp dụng định lý Py-ta-go cho tam giác MNP vuông tại M:

\(MN^2+MP^2=NP^2\)

Thay số: \(7^2+MP^2=25^2\)

\(\Rightarrow MP=24\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông MNP, đường cao MH ta có:

\(MK.NP=MN.MP\)

Thay số: \(MK.25=7.24\Rightarrow MK=6,72\left(cm\right)\)

Áp dụng định lý Py - ta - go cho tam giác MNK vuông tại K ta có:

\(MK^2+NK^2=MN^2\)

Thay số: \(6,72^2+NK^2=7^2\Rightarrow NK=1,96cm\)

8 tháng 11 2023

thanks bn

 

12 tháng 8 2016

ta sử dụng hệ thức lượng trong tam giác vuông  

\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)

mà MN=3MP/4

they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)

=> MP=\(4\sqrt{15}\)

bài 10: gống cái trên :

tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)

áp dungnj đl pita go ta có : 

NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm