Đường thẳngxx' cắt yy' tại O. Vẽ tia phân giác Ot của xOy.
a) Gọi Ot' là tia đối của tia Ot.So sánh xOt' và t Oy ' ?
b) Vẽ tia phân giác Om của x Oy ' .Tính góc mOt.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong nửa đường tròn tâm O đường kính AB =2R, đường tròn (I) tiếp xúc với nửa đường tròn (O) và đường kính AB. Đường tròn (K) tiếp xúc với nửa đường tròn (O) , đường tròn (I) và đường kính AB. Tính hiệu diện tích giữa đường tròn tâm I và đường tròn tâm K theo R
#Hỏi cộng đồng OLM
#Toán lớp 9
Chọn B
Đường củ cải là đường đa, còn lại là đường đơn
giúp mk với ạ,mk đang cần gấp
a) Ta có: \(\widehat{O_1}=\dfrac{\widehat{xOy}}{2}\)
Mà \(\widehat{O_1}=\widehat{O_2}\) ( đối đỉnh )
\(\widehat{xOy}=\widehat{x'Oy'}\) ( đối đỉnh )
\(\widehat{O_4}=\widehat{O_5}\)
Lại có:
\(\widehat{xOt'}=\widehat{xOy'}\) \(+\) \(\widehat{O_5}\) và \(\widehat{t'Oy}=\widehat{x'Oy}\) \(+\) \(\widehat{O_4}\)
Mà \(\widehat{xOy'}=\widehat{x'Oy}\) ( đối đỉnh )
\(\widehat{O_4}=\widehat{O_5}\)
⇒ \(\widehat{xOt'}=\widehat{tOy'}\) ( đpcm )
b) Vì \(\widehat{xOm}=\dfrac{1}{2}\widehat{xOy'}\) ; \(\widehat{O_1}=\dfrac{1}{2}\widehat{xOy}\) nên
\(\widehat{mOt}=\widehat{xOm}\) \(+\) \(\widehat{O_1}\) \(=\) \(\dfrac{1}{2}\left(\widehat{xOy'}+\widehat{xOy}\right)=90^o\)