Nếu a:b=5:3 và b:c=7:9 thì \(\frac{a+b}{b-c}\) có giá trị bằng
CẢM ƠN CÁC BẠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)(1)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)(2)
Từ (1) và (2) => \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt : \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\) => a = 45k ; b = 20k ; c = 12k . Thay vào \(\frac{a-b}{b-c}\) ta được :
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{k\left(45-20\right)}{k\left(20-12\right)}=\frac{45-20}{20-12}=\frac{25}{8}\)
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\left\{\begin{matrix}a=45k\\b=20k\\c=12k\end{matrix}\right.\)
Lại có: \(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Giải:
Ta có: \(a:b=9:4\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\)
\(b:c=5:3\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow a=45k,b=20k,c=12k\)
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{\left(45-20\right)k}{\left(20-12\right)k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
Ta có :
\(\frac{a}{b}=\frac{9}{4}\Rightarrow\frac{a}{9}=\frac{b}{4}\Rightarrow\frac{a}{45}=\frac{b}{20}\) (1)
\(\frac{b}{c}=\frac{5}{3}\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{12}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
Đặt \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow a=45k;b=20k;c=12k\) Thay vào \(\frac{a-b}{b-c}\) ta được :
\(\frac{a-b}{b-c}=\frac{45k-20k}{20k-12k}=\frac{25k}{8k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
- Xét: a : b = 9 : 4 \(\Rightarrow\frac{a}{9}=\frac{b}{4}\)\(\Rightarrow\frac{a}{45}=\frac{b}{20}\)
b : c = 5 : 3 \(\Rightarrow\frac{b}{5}=\frac{c}{3}\)\(\Rightarrow\frac{b}{20}=\frac{c}{12}\)
=> \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}\)
- Đặt: \(\frac{a}{45}=\frac{b}{20}=\frac{c}{12}=k\Rightarrow\hept{\begin{cases}a=45.k\\b=20.k\\c=12.k\end{cases}}\)
-Thay a = 45.k, b = 20.k , c = 12.k vào \(\frac{a-b}{b-c}\) ;ta có:
\(\frac{a-b}{b-c}=\frac{45.k-20.k}{20.k-12.k}=\frac{25.k}{8.k}=\frac{25}{8}\)
Vậy \(\frac{a-b}{b-c}=\frac{25}{8}\)
a:b=b:c=c:a=>a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra: a/b=1 suy ra: a=b
b/c=1 =>b=c
suy ra: a=b=c
suy ra: a^2.b^2.c^1930:b^1935=1.1.1:1=1
\(\frac{a}{5}=\frac{b}{3},\frac{b}{7}=\frac{c}{9}\Rightarrow\frac{a}{35}=\frac{b}{21},\frac{b}{21}=\frac{c}{27}\Rightarrow\frac{a}{35}=\frac{b}{21}=\frac{c}{27}\)
\(\Rightarrow\frac{a}{35}=\frac{b}{21}=\frac{c}{27}=\frac{a+b}{35+21}=\frac{a+b}{56}=\frac{b-c}{21-27}=\frac{b-c}{-6}\)(T/C)
\(\Rightarrow\frac{a+b}{56}=\frac{b-c}{-6}=\frac{a+b}{b-c}=\frac{56}{-6}=-\frac{28}{3}\)
Giải:
Ta có: \(a:b=5:3\Rightarrow\frac{a}{5}=\frac{b}{3}\Rightarrow\frac{a}{35}=\frac{b}{21}\)
\(b:c=7:9\Rightarrow\frac{b}{7}=\frac{c}{9}\Rightarrow\frac{b}{21}=\frac{c}{27}\)
\(\Rightarrow\frac{a}{35}=\frac{b}{21}=\frac{c}{27}\)
Đặt \(\frac{a}{35}=\frac{b}{21}=\frac{c}{27}=k\)
\(\Rightarrow a=35k,b=21k,c=27k\)
Từ đó \(\frac{a+b}{b-c}=\frac{35k+21k}{21k-27k}=\frac{56k}{-6k}=\frac{-28}{3}\)
Vậy \(\frac{a+b}{b-c}=\frac{-28}{3}\)