cho tam giac abc đều có độ dài cạnh là a ;Tính đường cao va diện tích của tam giac do
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


chu vi HTG : (91+105+124):2=160
Độ dài cạnh AB là : 160 - 105 = 55
Độ dài cạnh AC là : 124 - 55 = 69
Độ dài cạnh BC là : 91 - 55 = 36

Cho hình tam giac ABC có cạnh BC = 10 cm.Gọi M là tung điểm cạnh AC.Tính độ dài cạnh MN

2 lần chu vi của ABC là:
18,25 + 23,55 + 20,3 = 62,1 (cm)
Chu vi của ABC là:
62,1 : 2 = 31,05 (cm)
Đ/S:...

Dựng hình bình hành ABDC.
Áp dụng quy tắc hình bình hành vào ABDC ta có:
\(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \Rightarrow \left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD\)
Gọi O là giao điểm của AD và BC, ta có:
\(AO = \sqrt {A{B^2} - B{O^2}} = \sqrt {A{B^2} - {{\left( {\frac{1}{2}BC} \right)}^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\)
\(AD = 2AO = a\sqrt 3 \Rightarrow \left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = a\sqrt 3 \)
Vậy độ dài vectơ \(\overrightarrow {AB} + \overrightarrow {AC} \) là \(a\sqrt 3 \)

Độ dài của cạnh AC là: 58-42=16(cm)
Độ dài của cạnh AB là: 58-34=24(cm)
Độ dài của cạnh BC là: 34-16=18(cm)
please :3

Các vectơ có độ dài bằng a và có điểm đầu, điểm cuối là các đỉnh của tam giác ABC là:
\(\overrightarrow {AB} ;\;\overrightarrow {BA} ;\;\overrightarrow {AC} ;\;\overrightarrow {CA} ;\;\overrightarrow {BC} ;\;\overrightarrow {CB} \)
Chú ý khi giải:
Vectơ \(\overrightarrow {AB} \) khác vectơ \(\overrightarrow {BA} \) (khác nhau điểm đầu và điểm cuối).
AH là đường cao của tam giác ABC đều
=> AH là đường trung trực của tam giác ABC đều
=> AH _I_ BC tại H là trung điểm của BC
=> BH = HC = \(\frac{BC}{2}=\frac{a}{2}\)
Tam giác HAB vuông tại H có:
\(AB^2=AH^2+BH^2\)
\(AH^2=AB^2-BH^2\)
\(=a^2-\left(\frac{a}{2}\right)^2\)
\(=\frac{4a^2}{4}-\frac{a^2}{4}\)
\(=\frac{3a^2}{4}\)
\(AH=\sqrt{\frac{3a^2}{4}}=\frac{a\sqrt{3}}{2}\left(cm\right)\)
\(S_{ABC}=\frac{AH\times BC}{2}=\frac{a\sqrt{3}}{2}\times a\times\frac{1}{2}=\frac{a^2\sqrt{3}}{4}\left(cm^2\right)\)
cảm ơn