K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

a) It is located inside my school, besides the council-chamber.

b) It's always opens at 7:30 AM in the morning and closes at 17:00 PM in the afternoon.

c) It has about 1,000 books with all kinds.

d) It has reference books, magazines, school-book.....

e) It has more than 20 shelves.

f) There are about 20 people work in there.

20 tháng 10 2021

459+156+186+486+784=2 107 nha bạn!

20 tháng 10 2021

3333333333333333333333333333334444444444444444444444444444...............4445555555555555555555566666666666666666666666777777777777777777777777777888888888888888888888888888.....................................................,....................................................................................................................................

10 tháng 12 2021

TL

= 90

~HT~

10 tháng 12 2021

bằng 90 nha bạn

3 tháng 5 2018

Tổng 2 số: 30*2=60

Số thứ 1: 60/(4+1)*4=48

Số thứ 2: 60-48=12

Vậy St1=48, St2=12

Tổng 2 số là :

   30 x 2 = 60

Ta có sơ đồ :

St1 :|___|___|___|___|              tổng : 60

St2 :|___|

Tổng số phần bằng nhau là :

   4 + 1 = 5 (phần)

St1 là :

   60 : 5 x 4 = 48

St2 là :

   60 - 48 = 12 

       Đ/S : st1 : 48

                 st2 : 12

12 tháng 7 2018

\(x+\frac{1}{4}=\frac{1}{64}\)

\(x=\frac{1}{64}-\frac{1}{4}\)

\(x=-\frac{15}{64}\)

Vậy x = -15/64

hok tốt

==.==

(x+1/4)=1/64

x=1/64-1/4

x=-15/64

Vậy x = ...

Sửa đề: E,M,D lần lượt là trung điểm của BA,BC,AC.

a: Xét ΔABC có

E,D lần lượt là trung điểm của AB,AC

=>ED là đường trung bình của ΔABC

=>ED//BC và \(ED=\frac{BC}{2}\)

ED//BC

=>ED//CM

ta có: \(ED=\frac{BC}{2}\)

\(CM=\frac{CB}{2}\)

Do đó: ED=CM

Xét tứ giác EDCM có

ED//CM

ED=CM

Do đó: EDCM là hình bình hành

b: Sửa đề: Kẻ AK⊥BC tại K

Ta có: ED//BC

=>ED//KM

EDCM là hình bình hành

=>EM=CD(1)

Ta có: ΔAKC vuông tại K

mà KD là đường trung tuyến

nên DK=DC(2)

Từ (1),(2) suy ra EM=KD

Xét tứ giác EDMK có

ED//MK

EM=DK

Do đó: EDMK là hình thang cân

26 tháng 8

Giả sử đề bài là:

Cho tam giác \(A B C\) với \(A B > A C\). Lấy \(E , M , D\) lần lượt là trung điểm của \(A B , B C , C A\).

a) Chứng minh tứ giác \(E D C M\) là hình bình hành.

b) Kẻ điểm \(K\) trên đoạn \(B C\) sao cho \(K\) vuông góc với \(B C\) (câu này hơi khó hiểu, có thể ý bạn là kẻ đường thẳng \(K\) vuông góc với \(B C\) tại điểm \(K\) thuộc đoạn \(B C\)), chứng minh tứ giác \(E D M K\) là hình thang cân.


Nếu đúng như trên, mình sẽ giải theo giả thiết này nhé.


Phần a) Chứng minh tứ giác \(E D C M\) là hình bình hành

Bước 1: Xác định các điểm

  • \(E\) là trung điểm \(A B\)
  • \(M\) là trung điểm \(B C\)
  • \(D\) là trung điểm \(C A\)
  • \(C\) là đỉnh tam giác

Bước 2: Phân tích tứ giác \(E D C M\)

Tứ giác có các đỉnh: \(E , D , C , M\).

Ta cần chứng minh \(E D C M\) là hình bình hành, tức hai cặp cạnh đối song song và bằng nhau:

  • \(E D \parallel C M\) và \(E D = C M\)
  • \(D C \parallel E M\) và \(D C = E M\)

Bước 3: Sử dụng vectơ

Gọi vectơ \(\overset{⃗}{A B} = \overset{⃗}{b}\)\(\overset{⃗}{A C} = \overset{⃗}{c}\), điểm \(A\) là gốc tọa độ.

  • \(E\) trung điểm \(A B \Rightarrow \overset{⃗}{E} = \frac{\overset{⃗}{A} + \overset{⃗}{B}}{2} = \frac{\overset{⃗}{0} + \overset{⃗}{b}}{2} = \frac{\overset{⃗}{b}}{2}\)
  • \(M\) trung điểm \(B C \Rightarrow \overset{⃗}{M} = \frac{\overset{⃗}{B} + \overset{⃗}{C}}{2} = \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2}\)
  • \(D\) trung điểm \(C A \Rightarrow \overset{⃗}{D} = \frac{\overset{⃗}{C} + \overset{⃗}{A}}{2} = \frac{\overset{⃗}{c} + \overset{⃗}{0}}{2} = \frac{\overset{⃗}{c}}{2}\)
  • \(C = \overset{⃗}{c}\)

Bây giờ tính các vectơ cạnh của tứ giác \(E D C M\):

  • \(\overset{⃗}{E D} = \overset{⃗}{D} - \overset{⃗}{E} = \frac{\overset{⃗}{c}}{2} - \frac{\overset{⃗}{b}}{2} = \frac{\overset{⃗}{c} - \overset{⃗}{b}}{2}\)
  • \(\overset{⃗}{C M} = \overset{⃗}{M} - \overset{⃗}{C} = \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2} - \overset{⃗}{c} = \frac{\overset{⃗}{b} + \overset{⃗}{c} - 2 \overset{⃗}{c}}{2} = \frac{\overset{⃗}{b} - \overset{⃗}{c}}{2} = - \overset{⃗}{E D}\)

Do đó,

\(\overset{⃗}{E D} = - \overset{⃗}{C M} \Rightarrow E D \parallel C M \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; E D = C M\)

  • \(\overset{⃗}{D C} = \overset{⃗}{C} - \overset{⃗}{D} = \overset{⃗}{c} - \frac{\overset{⃗}{c}}{2} = \frac{\overset{⃗}{c}}{2}\)
  • \(\overset{⃗}{E M} = \overset{⃗}{M} - \overset{⃗}{E} = \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2} - \frac{\overset{⃗}{b}}{2} = \frac{\overset{⃗}{c}}{2}\)

Do đó,

\(\overset{⃗}{D C} = \overset{⃗}{E M} \Rightarrow D C \parallel E M \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; D C = E M\)


Kết luận:

Hai cặp cạnh đối song song và bằng nhau nên tứ giác \(E D C M\) là hình bình hành.


Phần b) Chứng minh \(E D M K\) là hình thang cân

Bạn nói: "Kẻ \(K\) vuông góc với \(B C\)\(K\) thuộc \(B C\)", ý mình đoán là bạn kẻ điểm \(K\) trên đoạn \(B C\) sao cho đường thẳng \(A K\) vuông góc với \(B C\).


Bước 1: Đặt \(K\) là chân đường vuông góc từ \(A\) xuống \(B C\)

  • \(K\) là điểm thuộc \(B C\) sao cho \(A K \bot B C\).

Bước 2: Tứ giác \(E D M K\) gồm các điểm:

  • \(E\) trung điểm \(A B\)
  • \(D\) trung điểm \(C A\)
  • \(M\) trung điểm \(B C\)
  • \(K\) chân vuông góc từ \(A\) xuống \(B C\)

Bước 3: Chứng minh \(E D M K\) là hình thang cân

  • Để chứng minh tứ giác \(E D M K\) là hình thang cân, ta cần chứng minh:
    • Có một cặp cạnh đối song song (thang)
    • Hai cạnh bên bằng nhau (cân)

Bước 4: Phân tích

  • \(M\) và \(K\) đều nằm trên \(B C\), nên \(M K \parallel E D\) (điều này cần chứng minh)
  • Sử dụng vectơ:

Tính vectơ \(\overset{⃗}{M K}\) và \(\overset{⃗}{E D}\):

  • \(\overset{⃗}{E D} = \frac{\overset{⃗}{c} - \overset{⃗}{b}}{2}\) (như trên)
  • \(M\) trung điểm \(B C \Rightarrow \overset{⃗}{M} = \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2}\)
  • \(K\) thuộc \(B C\), có thể biểu diễn: \(\overset{⃗}{K} = \overset{⃗}{b} + t \left(\right. \overset{⃗}{c} - \overset{⃗}{b} \left.\right)\), với \(0 \leq t \leq 1\)
  • Vectơ \(\overset{⃗}{M K} = \overset{⃗}{K} - \overset{⃗}{M} = \overset{⃗}{b} + t \left(\right. \overset{⃗}{c} - \overset{⃗}{b} \left.\right) - \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2} = \left(\right. t - \frac{1}{2} \left.\right) \left(\right. \overset{⃗}{c} - \overset{⃗}{b} \left.\right)\)

Do đó, \(\overset{⃗}{M K}\) song song với \(\overset{⃗}{E D}\), nên \(E D \parallel M K\).


Bước 5: Chứng minh \(E D M K\) là hình thang cân

  • Cặp cạnh \(E D\) và \(M K\) song song → \(E D M K\) là hình thang.
  • Ta cần chứng minh \(E M = D K\) (hoặc \(E D = M K\)) để thang cân.

Bạn có thể tính độ dài \(E M\) và \(D K\) hoặc \(E D\) và \(M K\) chứng minh bằng vectơ.

16 tháng 12 2022

`1)\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}`

`2)`

`a)\sqrt{x^2-4x+4}=1`

`<=>\sqrt(x-2)^2}=1`

`<=>|x-2|=1`

`<=>[(x-2=1),(x-2=-1):}<=>[(x=3),(x=1):}`

`b)\sqrt{x^2-3x}-\sqrt{x-3}=0`              `ĐK: x >= 3`

`<=>\sqrt{x}\sqrt{x-3}-\sqrt{x-3}=0`

`<=>\sqrt{x-3}(\sqrt{x}-1)=0`

`<=>[(\sqrt{x-3}=0),(\sqrt{x}-1=0):}`

`<=>[(x-3=0),(\sqrt{x}=1):}<=>[(x=3(t//m)),(x=1(ko t//m)):}`

NV
8 tháng 1 2023

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{7}{2}\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{37}{4}\)

\(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\dfrac{153}{8}\)

\(C=x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2=\dfrac{977}{16}\)

\(D=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\dfrac{\sqrt{65}}{2}\)

\(E=\left(2x_1+x_2\right)\left(2x_2+x_1\right)=2\left(x_1^2+x_2^2\right)+5x_1x_2=1\)

`a,` Đthang đi qua `A(3, 12)`.

`-> x = 3, y = 12 in y`.

`<=> 12 = 9a.`

`<=> a = 12/9 = 4/3.`

`b,` Đthang đi qua `B(-2;3)`.

`=> x = -2, y = 3 in y`.

`<=> 3=4a`.

`<=> a = 3/4`.