tìm 6 số tự nhiên sao cho tổng của chúng bằng tích của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi 6 số cần tìm là a,b,c,d,e,f ( a,b,c,d,e,f là các số tự nhiên )
ta có a+b+c+d+e+f = abcdef
+ a =b=c=d=e=f suy ra : 6a = a6
nếu a= 0 thì a=b=c=d=e=f=0 tm 6a = a6 (chọn )
nếu a lớn hơn bằng 1: suy ra a5 = 6 ( ko tồn tại số tự nhiên a tm ) (loại)
+ a,b,c,d,e,f đôi một khác nhau : suy ra a+b+c+d+e+f lớn hơn 0
suy ra a,b,c,d,e,f khác 0 , abcdef khác 0
suy ra a+b+c+d+e+f luôn nhỏ hơn abcdef ( ko tm với đề bài) (loại )
Vậy a=b=c=d=e=f tmđb
![](https://rs.olm.vn/images/avt/0.png?1311)
a) n=7k+1 ( \(k\in N\))
b) 18 va 66 hoac 6 va 78 hoac 30 va 54
c) 15 va 20 hoac 5 va 60
d) 10 va 900 hoac 20 va 450 hoac 180 va 50 hoac 100 va 90
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử 3 số tự nhiên đó lần lượt là a, b, c. Theo yêu cầu đề bài, ta có phương trình:
a + b + c = abc
Chia cả 2 vế của phương trình trên cho abc, ta có:
1/a + 1/b + 1/c = 1
Đây là phương trình Diophantus của bài toán. Chúng ta sẽ giải phương trình này bằng phương pháp thủ công như sau:
Ta có thể giả sử a ≤ b ≤ c (do tính chất giao hoán và kết hợp của phép nhân)
Trường hợp a = 1. Ta có 1/b + 1/c = 1, kết hợp với a ≤ b ≤ c, ta có b ≥ 2, c ≥ 3. Thử từng trường hợp b = 2, 3, ... ta sẽ tìm ra được 1 nghiệm là (1, 2, 3)
Trường hợp a = 2. Ta có 1/b + 1/c = 1/2. Kết hợp với a ≤ b ≤ c, ta có b ≥ 3, c ≥ 5. Thử từng trường hợp b = 3, 4, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Trường hợp a = 3. Ta có 1/b + 1/c = 2/9. Tương tự, ta có b ≥ 4, c ≥ 13. Thử từng trường hợp b = 4, 5, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Vậy nghiệm duy nhất của phương trình ban đầu là (1, 2, 3).
![](https://rs.olm.vn/images/avt/0.png?1311)
tích của chúng=2015 nên sẽ có 1 số có tận cùng là 5
=>số còn lại có tận cùng là 0
=>tích có tận cùng là 0
=>mâu thuẫn với đề bài
=>không có 2 số nào thỏa mãn với đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Gọi hai số tự nhiên cần tìm là a và b
Ta có : \(a=6.k_1;b=6.k_2\)
Trong đó : \(ƯCLN\left(k_1,k_2\right)=1\)
Mà : \(a+b=84\Rightarrow6.k_1+6.k_2=84\)
\(\Rightarrow6\left(k_1+k_2\right)=84\Rightarrow k_1+k_2=84\div6=14\)
+) Nếu : \(k_1=1\Rightarrow k_2=13\Rightarrow\begin{cases}a=6\\b=78\end{cases}\)
+)Nếu : \(k_1=3\Rightarrow k_2=11\Rightarrow\begin{cases}a=18\\b=66\end{cases}\)
+)Nếu : \(k_1=5\Rightarrow k_2=9\Rightarrow\begin{cases}a=30\\b=54\end{cases}\)
Vậy ...
b, Tương tự câu a,
c, Gọi hai số tự nhiên cần tìm là a và b
Vì : \(ƯCLN\left(a,b\right)=10;BCNN\left(a,b\right)=900\)
\(\RightarrowƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b=900.10=9000\)
Phần còn lại giống câu a và câu b tự làm
6 số 0 có tổng và tích đề bằng 0