Cho tam giác abc cân tại a. 2 đường cao ah= 20, bk= 24. Tính 3 cạnh tam giác abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


+AH.BC = AC.BK => BC =6/5 AC (1)
+ Pi ta go HAC => \(\left(\frac{BC}{2}\right)^2=AC^2-AH^2\Leftrightarrow4AC^2-BC^2=4.10^2\) (2)
(1)(2) => AC =25/2 ; BC =15
=> CABC = BC + AC+AB =BC+2AC = 15 +25 =40

ta có:
AH.BC = BK.AC
10.BC = 12.AC
=>BC= 6.AC/5 => BC^2=36.AC^2/25
mặt khác:
AC^2 = AH^2 + BC^2/4 = AH^2 + 36.AC^2/100
=>(1-36/100). AC^2= AH^2 = 100
=> AC^2 = 100^2/8^2
=> AC = 100/8 = 25/2
=> BC = 6.25/2.5=15
ta có:
AH.BC = BK.AC
10.BC = 12.AC
=>BC= 6.AC/5 => BC^2=36.AC^2/25
mặt khác:
AC^2 = AH^2 + BC^2/4 = AH^2 + 36.AC^2/100
=>(1-36/100). AC^2= AH^2 = 100
=> AC^2 = 100^2/8^2
=> AC = 100/8 = 25/2
=> BC = 6.25/2.5=15
k mk nha
Làm ơn đó

a: AH*BC=BK*AC
=>BC/AC=BK/AH=6/5
=>BH/AC=3/5
=>CH/AC=3/5
=>CH/3=AC/5=k
=>CH=3k; AC=5k
AH^2+HC^2=AC^2
=>16k^2=32^2=1024
=>k^2=64
=>k=8
=>CH=24cm; AC=40cm
=>BC=48cm; AB=40cm
b: Xét ΔCKB vuông tại K và ΔCHA vuông tại H có
góc C chung
=>ΔCKB đồng dạng với ΔCHA
=>CK/CH=CB/CA
=>CK*CA=CH*CB=1/2BC^2
=>2*CK*CA=BC^2

Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG
b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
góc IAG = góc KAG (cmt)
AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)
c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC
refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG
b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
góc IAG = góc KAG (cmt)
AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)
c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: G ko cách đều ba cạnh của ΔABC vì G ko phải là tâm đường tròn nội tiếp tam giác

a) Vì \(\Delta ABC\) cân tại A, có AH là đường cao
\(\Rightarrow AH\) vừa là đường cao, vừa là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{\widehat{A}}{2}\)
Xét \(\Delta ABH\) và \(\Delta ACH\) có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(AH\): cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)
Dựa vào HTL trong tam giác vuông ta có:
X(2) ( là x bình phương) = 20(2) + 1/2Y(2) (*)
Trong đó X là cạnh bên AC, Y là cạnh đáy BC.
* Dựa vào CT tính diện tích tam giác ta có:
24X = 20 Y (**)
* Giải hệ (*)&(**) ta được: X = 25, Y = 30
copy ít thôi bạn :((