cho tam giác ABC có AB=16, AC=14, góc B=600. Tính BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Kẻ đường cao AH
Xét tam giác vuông ABH, ta có:
Áp dụng định lý Py-ta-go vào tam giác vuông AHC ta có:
Suy ra HC = 2.
Vậy BC = CH + HB = 2 + 8 = 10
Đáp án cần chọn là: A
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có \(AB^2=AC^2+BC^2\)
nên ΔABC vuông tại C
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi H là chân đường cao kẻ từ A xuống BC trong tam giác ABC.
+ Ta có: A H ⊥ B C O A ⊥ B C ⇒ B C ⊥ O A H ⇒ O H ⊥ B C ⇒ d(O; BC) = OH
+ Nửa chu vi tam giác ABC: p = 14 + 16 + 10 2 = 20
S A B C = 20 20 − 14 20 − 16 20 − 10 = 40 3 (theo công thức Hê-rông)
Lại có S A B C = 1/2AH.BC ⇒ AH = 2 S A B C B C = 80 3 10 = 8 3 .
+ Tam giác OAH vuông tại A (OA ⊥ AH)
⇒ OH = O A 2 + A H 2 = 8 2 + 8 3 2 = 16.
Vậy d(O; BC) = OH = 16.
Đáp án B
Ta có: AC2 = AB2 + BC2 - 2AB.BC.cos(ABC)
<=> 142 = 162 + BC2 -2.16.BC.cos(60)
<=> BC2 - 16BC + 60 = 0
<=> BC = 6 hoặc BC = 10
Thoe bất đẳng thức tam giác thì car2 trường hợp trên đều thỏa mãn
Vậy BC = 6 hoặc BC = 10