Viết phương trình mặt phẳng (P) đi qua điểm G(1;2;3) và lần lượt cắt Ox, Oy, Oz tại A, B, C sao cho G là trọng tâm của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chọn C.
Mặt phẳng (P) song song với mặt phẳng (Q):2x - 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: 2x - 3z + D = 0 (D ≠ 1).
Mặt phẳng (P) đi qua điểm M nên thay tọa độ điểm vào phương trình mặt phẳng (P) ta được:
2.0 - 3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x - 3z + 9 = 0.

Chọn B
Mặt phẳng (P) song song với mặt phẳng (Q): 2x – 3z + 1 = 0 nên mặt phẳng (P) có phương trình dạng: .
Mặt phẳng (P) đi qua điểm M(0;1;3) nên thay tọa độ điểm vào phương trình mặt phẳng (P) Ta được: 2.0 -3.3 + D = 0 ⇔ D = 9 (thỏa mãn D ≠ 1).
Vậy phương trình mặt phẳng (P) là: 2x – 3z + 9 = 0.

Vì mặt phẳng (α) song song với mặt phẳng ( β) : 2x – y + 3z + 4 = 0 nên phương trình của mp(α) có dạng 2x – y + 3z + D = 0
Vì M(2; -1; 2) ∈ mp(α) nên 4 + 1 + 6 + D = 0 <=> D = -11
Vậy phương trình của mp(α) là: 2x – y + 3z - 11= 0

Chọn D
Vì A thuộc Ox nên A(a;0;0).
Vì B thuộc Oy nên B(0;b;0).
Vì C thuộc Oz nên C(0;0;c).
G là trọng tâm tam giác ABC khi và chỉ khi

Đáp án D
Vì A thuộc Ox nên A(a;0;0).
Vì B thuộc Oy nên B(0;b;0).
Vì C thuộc Oz nên C(0;0;c).
G là trọng tâm tam giác ABC khi và chỉ khi

Do G là trọng tâm ∆ A B C nên C ( -1;3;-4 )
Ta có: A B → = ( -1;1;1 ); A C → = ( -2;2;-4 )
Đường thẳng ∆ qua G nhận u → = A B → ; A C → = ( -6;-6;0 ) nên có phương trình là x = - 1 + t y = 3 + t z = - 4
Đáp án D
Giả sử A(a;0;0); B(0;b;0) và C(0;0;c) với \(abc\ne0\). Khi đó, mặt phẳng (P) có phươn trình :
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
Do \(G\left(1;2;3\right)\in\left(P\right)\) nên
\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1\) (1)
Vì G là trọng tâm của tam giác ABC nên :
\(\begin{cases}1=\frac{a+0+0}{3}\\2=\frac{0+b+0}{3}\\3=\frac{0+0+c}{3}\end{cases}\)
Dễ dàng kiểm tra được \(a=3;b=6;c=9\) thỏa mãn (1). Vậy mặt phẳng cần tìm là \(\frac{x}{3}+\frac{y}{6}+\frac{z}{9}=1\)
hay \(6x+3y+2z-18=0\)