Bộ GD&ĐT cấm dạy thêm: Giải pháp nào dành cho nhà trường và giáo viên?
🔥 Xem ngay Bộ đề kiểm tra giữa kỳ II năm học 2024 - 2025
Chinh phục Đấu trường thử thách OLM hoàn toàn mới, xem ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải và biện luận bất phương trình
\(\sqrt{2x^2+3}\)<\(x-a\)
\(\sqrt{2x^2+3}\) < \(x-a\) (1)
\(\Leftrightarrow\) \(\begin{cases}x-a\ge0\\2x^2+3\ge0\\2x^2+3<\left(x-a\right)^2\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x\in\left(a;+\infty\right)\\f\left(x\right):=x^2+2ax+3-a^2<0\end{cases}\) (a)
\(x\in\left(a;+\infty\right)\) := (*)
Hiển nhiên T(1) = T(a) \(\cap\) (*). Xét bất phương trình (a) có
\(\Delta=2a^2-3\) ; \(\frac{s}{2}-a=-2a\) và \(1.f\left(a\right)=2a^2+3>0\) với mọi a \(\in R\)
- Nếu \(\left|a\right|\le\frac{\sqrt{6}}{2}\) thì \(\Delta\le0\) suy ra (a) vô nghiệm nên (1) vô nghiệm
- Nếu \(\left|a\right|>\frac{\sqrt{6}}{2}\) thì \(\Delta>0\) nên bất phương trình (a) có tập nghiệm
T(a) = (\(x_1;x_2\)) với \(x_1=-a-\sqrt{2a^2-3}\); \(x_2=-a+\sqrt{2a^2-3}\)
- Nếu \(\left|a\right|>\frac{\sqrt{6}}{2}\) thì \(\frac{s}{2}-a>0\) nên ta có a<\(x_1\)\(\le\) \(x_2\)
Khi đó T(1) = T(a) \(\cap\) (*)=\(\varnothing\) hay (1) vô nghiệm
- Nếu \(\left|a\right|<\frac{\sqrt{6}}{2}\) thì \(\frac{s}{2}-a>0\) nên ta có a<\(x_1\)\(\le\) \(x_2\)
Khi đó T(1) = T(a) \(\cap\) (*)=T(a). Từ đó kết luận :
+ Với \(a\ge-\frac{\sqrt{6}}{2}\) thì bất phương trình đã cho vô nghiệm
+ Với \(a<-\frac{\sqrt{6}}{2}\) thì bất phương trình đã cho có nghiệm
\(-a-\sqrt{2a^2-3}\) <x<\(-a+\sqrt{2a^2-3}\)
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\))(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x-2m+1}\) <= 0
chtt
Câu này là C đúng hog
giải và biện luận các bất phương trình : a) (2x - \(\sqrt{2}\) )(x - m) > 0 ; b) \(\frac{\sqrt{3}-x}{x+2m-1}\) <= 0
giải và biện luận các hệ bất phương trình : a) (x - \(\sqrt{5}\) )( \(\sqrt{7}\) - 2x ) > 0 và x - m <= 0 ; b) \(\frac{2}{x-1}\) < \(\frac{5}{2x-1}\) và x - m >= 0
giải và biện luận các hệ bất phương trình : a) (x - \(\sqrt{5}\))( \(\sqrt{7}\) - 2x ) > 0 và x - m <= 0 ; b) \(\frac{2}{x-1}\) < \(\frac{5}{2x-1}\) và x - m >= 0
\(\sqrt{2x^2+3}\) < \(x-a\) (1)
\(\Leftrightarrow\) \(\begin{cases}x-a\ge0\\2x^2+3\ge0\\2x^2+3<\left(x-a\right)^2\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x\in\left(a;+\infty\right)\\f\left(x\right):=x^2+2ax+3-a^2<0\end{cases}\) (a)
\(x\in\left(a;+\infty\right)\) := (*)
Hiển nhiên T(1) = T(a) \(\cap\) (*). Xét bất phương trình (a) có
\(\Delta=2a^2-3\) ; \(\frac{s}{2}-a=-2a\) và \(1.f\left(a\right)=2a^2+3>0\) với mọi a \(\in R\)
- Nếu \(\left|a\right|\le\frac{\sqrt{6}}{2}\) thì \(\Delta\le0\) suy ra (a) vô nghiệm nên (1) vô nghiệm
- Nếu \(\left|a\right|>\frac{\sqrt{6}}{2}\) thì \(\Delta>0\) nên bất phương trình (a) có tập nghiệm
T(a) = (\(x_1;x_2\)) với \(x_1=-a-\sqrt{2a^2-3}\); \(x_2=-a+\sqrt{2a^2-3}\)
- Nếu \(\left|a\right|>\frac{\sqrt{6}}{2}\) thì \(\frac{s}{2}-a>0\) nên ta có a<\(x_1\)\(\le\) \(x_2\)
Khi đó T(1) = T(a) \(\cap\) (*)=\(\varnothing\) hay (1) vô nghiệm
- Nếu \(\left|a\right|<\frac{\sqrt{6}}{2}\) thì \(\frac{s}{2}-a>0\) nên ta có a<\(x_1\)\(\le\) \(x_2\)
Khi đó T(1) = T(a) \(\cap\) (*)=T(a). Từ đó kết luận :
+ Với \(a\ge-\frac{\sqrt{6}}{2}\) thì bất phương trình đã cho vô nghiệm
+ Với \(a<-\frac{\sqrt{6}}{2}\) thì bất phương trình đã cho có nghiệm
\(-a-\sqrt{2a^2-3}\) <x<\(-a+\sqrt{2a^2-3}\)