K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

jkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkjk/

18 tháng 4 2020

78r63649jfrc,idkhgyiu0-rpuv,m089bnoigomxkgkjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjiiiiiiiiiiiiiiiiiiiiiiiiiiiiiijjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

24 tháng 7 2019

Ta có \(1+\frac{a}{x}=1+\frac{x+y+z}{x}=\frac{2x+y+z}{x}\)

Áp dụng BĐT cosi \(x+x+y+z\ge4\sqrt[4]{x^2yz}\)

=> \(1+\frac{a}{x}\ge\frac{4\sqrt[4]{x^2yz}}{x}\)

Tương tự\(1+\frac{a}{y}\ge\frac{4\sqrt[4]{y^2xz}}{y}\)\(1+\frac{a}{z}\ge\frac{4\sqrt[4]{z^2yx}}{z}\)

=> \(Q\ge\frac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)

MinQ=64 khi \(x=y=z=\frac{a}{3}\)