chứng minh đa thức f(x) = x^2 + x + 1 ko có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.


1/ Ta có H (x) có một nghiệm bằng 2
=> H (2) = 0
=> \(4a-2+1=0\)
=> \(4a-\left(2-1\right)=0\)
=> \(4a-1=0\)
=> \(4a=1\)
=> \(a=\frac{1}{4}\)
Vậy khi \(a=\frac{1}{4}\)thì H (x) có một nghiệm bằng 2.
2/
Ta có \(x^4\ge0\)với mọi giá trị của x
=> \(x^4+101>0\)với mọi giá trị của x
=> f (x) không có nghiệm (đpcm)
3/
Ta có \(g\left(1\right)=-2-7.1+8=-2-7+8=-9+8=-1\ne0\)
=> 1 không phải là nghiệm của đa thức g (x)
và \(g\left(3\right)=-2-7.3+8=-2-21+8=-23+8=-15\ne0\)
=> 3 không phải là nghiệm của đa thức g (x)
2. Chứng minh f(x)=x4 + 101 không có nghiệm
Ta có:x4+101=0
=>x4=-101
=>phương trình vô nghiệm vì x4\(\ge\)0 mà -101<0


Thay x = 0 vào x . f(x + 1) = (x + 2) . f(x) được 0 . f(0 + 1) = 2 . f(0) hay f(0) = 0
Suy ra x = 0 là một nghiệm của f(x)
Thay x = -2 vào x . f(x + 1) = (x + 2) . f(x) được (-2) . f(-1) = 0 . f(-2) hay f(-1) = 0
Suy ra x = -1 là một nghiệm của f(x)
vậy đa thức f(x) có ít nhất 2 nghiệm là 0 và -1
x^2 + x +1 = x^2 +x +1/4 +3/4 = [x+1/2] ^2 + 3/4 > 0
=> x^2 +x +1 vô no