K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan
HK
0

PN
1

15 tháng 8 2019
\(Q=\frac{a^4}{ab+ca}+\frac{b^4}{ab+bc}+\frac{c^4}{bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{2}\ge\frac{1}{6}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
NT
0

DC
1

AH
Akai Haruma
Giáo viên
24 tháng 7 2024
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM:
$\text{VT}=\sum \frac{a^4}{a(b+c)}\geq \frac{(a^2+b^2+c^2)^2}{\sum a(b+c)}=\frac{(a^2+b^2+c^2)^2}{2(ab+bc+ac)}$
$\geq \frac{(ab+bc+ac)^2}{2(ab+bc+ac)}=\frac{ab+bc+ac}{2}\geq \frac{3}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\frac{\left(a+b\right)^3}{c^3}+\frac{\left(b+c\right)^3}{a^3}+\frac{\left(c+a\right)^3}{b^3}\)
\(\frac{\left(a^2b+ab^2\right)^3+\left(b^2c+c^2b\right)^3+\left(c^2a+a^2c\right)^3}{\left(abc\right)^3}\)
\(\left(\frac{a}{c}+\frac{b}{c}\right)^3+\left(\frac{b}{a}+\frac{c}{a}\right)^3+\left(\frac{c}{b}+\frac{a}{b}\right)^3\)
\(\left(\frac{a+b}{c}\right)^3+\left(\frac{b+c}{a}\right)^3+\left(\frac{c+a}{b}\right)^3\)
dễ thấy \(\frac{c}{a+b}=\frac{1}{2}< =>\frac{a+b}{c}=2\)
làm tương tự với 3 cái còn lại ta đc:
\(2^3+2^3+2^3=24\)