K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

ta có :

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

......................

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)

\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)

                                                                                                                      HC TỐT NHÉ ( NHỚ K CHO MK NHA , MỎI TAY LẮM ĐÓ )

25 tháng 4 2024

@Ayawasa Misaki sai đề kìa

Đề bài sai rồi!Riêng 1/(2.2) đã bằng 1/4 rùi thì tổng trên phải lớn hơn 1/4 chứ!

25 tháng 7 2019

Bạn Phạm Gia Bảo nói đúng đấy

Bạn nên sửa đề bài đi

30 tháng 7 2019

Giúp mình bài này với

30 tháng 7 2019

\(\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+...+\frac{1}{200.200}\)

\(=\frac{1}{4}\left(1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=\frac{1}{4}\left(1+1-\frac{1}{100}\right)=\frac{1}{4}\left(2-\frac{1}{100}\right)=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)

AH
Akai Haruma
Giáo viên
22 tháng 10 2024

Lời giải:

$M=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{99}{100}$

$=\frac{1.2.3.4....99}{2.3.4...100}=\frac{1}{100}$

Hiển nhiên $\frac{1}{15}> \frac{1}{100}> \frac{1}{110}$ nên ta có đpcm.

AH
Akai Haruma
Giáo viên
22 tháng 10 2024

** Sửa đề: CMR: $\frac{1}{15}> M> \frac{1}{110}$

18 tháng 6 2024

A=2.(4-2)+4.(6-2)+6.(8-2)+........+98.(100-2)+100.(102-2)

A=(2.4-2.2)+(4.6-2.4)+(6.8-2.6)+....+(98.100-2.98)+(100.102-2.100)

A(2.4+4.6+6.8+...+98.100+100.102)=2.(2+4+6+....+98+100)

Đặt M=2.4+4.6+6.8+...+98.100+100.102 và N=2+4+6+....+98+100

Còn bao nhiêu bn tự giải nhé =)))

16 tháng 7 2019

\(A=4\left(1.1+2.2+....30.30\right)\) 

\(A=4\left(1.2+....+30.31-1-2-....-30\right)\Rightarrow\frac{A}{4}=1.2+...+30.31-\frac{30.31}{2}\) 

\(\frac{3}{4}A=1.2.3+2.3\left(4-1\right)+.....+30.31.\left(32-29\right)-\frac{30.31.3}{2}=30.31.32-\frac{30.31.3}{2}\) 

........

16 tháng 7 2019

2.2 x 11 + 3.3 x 11 + 4.4 x 11 + 5.5 x 11 + 6.6 x 11

= 24.2 + 36.3 + 48.4 + 60.5 + 72.6 

= 60.5 + 48.4 + 60.5 + 72.6

= 221

21 tháng 8 2016

1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9

> 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/9.10

> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/9 - 1/10

> 1/2 - 1/10

> 5/10 - 1/10

> 2/5 (1)

1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9

< 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9

< 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9

< 1 - 1/9

< 8/9 (2)

Từ (1) và (2) => 2/5 < 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/9.9 < 8/9

2 tháng 5 2020

Ta có : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)(đpcm)

+)Ta thấy:\(\frac{1}{2.2}< \frac{1}{1.2}\)

                   \(\frac{1}{3.3}< \frac{1}{2.3}\)

                     ............................

                     ..............................

                  \(\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...............+\frac{1}{100.100}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..............+\frac{1}{99}-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+.............+\frac{1}{100.100}< 1\left(\text{Đ}PCM\right)\)

Chúc bạn học tốt