Chứng minh các số sau là số nguyên tố cùng nhau với n \(\in\)N
d, 2 số lẻ liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3
Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d
=> 2k+1 chia hết cho d; 2k+3 chia hết cho d
=> (2k+1 - 2k-3) chia hết cho d
=> -2 chia hết cho d
=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}
mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
b) Gọi ƯCLN(2n+5;3n+7) là d
=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d
3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
=> (6n+15-6n-14) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
mà d lớn nhất => d = 1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a) Gọi hai số lẻ liên tiếp là 2n + 1; 2n + 3 ( n\(\in\) N)
Gọi d = ƯCLN (2n + 1; 2n + 3)
=> 2n + 1 ; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 1) chia hết cho d
=> 2 chia hết cho d => d = 1 hoặc d = 2
Vì 2n + 1 lẻ nên 2n + 1 không chia hết cho 2
=> d = 1
=> 2n+ 1 và 2n +3 nguyên tố cùng nhau
b) Gọi d = ƯCLN(2n + 5; 3n + 7)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3(2n + 5) chia hết cho d và 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) = 1 chia hết cho d
=> d = 1
=> 2n + 5 và 3n + 7 nguyên tố cùng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Gọi ƯCLN(7n+10; 5n+7) là d. Ta có:
7n+10 chia hét cho d => 35n+50 chia hết cho d
5n+7 chia hết cho d => 35n+49 chia hết cho d
=> 35n+50-(35n+49) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d = 1
=> ƯCLN(7n+10; 5n+7) = 1
=> 7n+10 và 5n+7 nguyên tố cùng nhau (đpcm)
Các câu sau tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)
Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)
3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2)
Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy ta có đpcm
Gọi 2 số đó là 2k+1; 2k+3. Ta có:
Gọi ƯCLN(2k+1; 2k+3) là d. Ta có:
2k+1 chia hết cho d
2k+3 chia hết cho d
=> 2k+3-(2k+1) chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư(2)
Mà 2k+1 lẻ => Không chia hết cho 2
=> d khác 2
=> d = 1
=> ƯCLN(2k+1; 2k+3) = 1
=> 2 số lẻ liên tiếp nguyên tố cùng nhau (đpcm)